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Introduction 
 

Figure 1: The fiber optic patient interface. 

This project aims to improve the estimation of functional properties of 
breast tissue in near infrared (NIR) imaging [1-3]. This imaging 
technique (also known as, diffuse optical tomography (DOT)) is non-
invasive and non-ionizing, which can be routinely used to characterize 
the breast tissue. In this, fibers placed on the boundary of breast deliver 
NIR light (600 nm – 950 nm) and collect the propagated diffused light 
(fiber-optic setup is shown in Figure 1) [2,3]. The attenuation and 
scattering of light through breast tissue volume provide an estimation 
of functional properties using a model-based approach [1]. This 
estimation outcome is highly dependent on the model/algorithm, more 
specifically on the approach to match the experimental data with the 
model data [1]. Even though the light propagates in three-dimensions 
(3D), the reconstruction procedures in NIR imaging were limited to two-dimensions (2D) due to computational 
complexity and limited number of measurements.  In this context, this project was funded to explore new 
reconstruction methods in 3D and decrease the computational complexity by optimizing these procedures.  
 
Specific aims of this project, in brief 

1) Reducing the computation complexity of 3D imaging by investigating different data collection strategies 
and optimizing these procedures. 

2) Improving the quantitative accuracy of optical images by exploring the effect of penalty terms on the 
reconstruction techniques. Incorporation of a priori information from other modalities (like MRI, CT) 
into the reconstruction procedures and studying its effect. 

3) Exploring effective ways of displaying and coregistering 3D DOT images. 
During the first year of the funding period of this project, several important advances towards these aims have 
been made. Specifically, optimization of critical computational aspects in NIR imaging was completed. An 
optimal data-collection strategy especially for the DOT clinical system at Dartmouth for the current estimation 
of breast tissue optical properties was also found. An effective way for usage of a-priori structural of 
information from MRI/CT into the image reconstruction procedure was developed and proven that the 
quantitative accuracy of DOT images can be improved by at least a factor of two with this additional 
information. As an important step towards realizing the final outcome of this project, a generalized estimation 
procedure was developed which will take into account the noise characteristics of instruments and breast tissue 
optical properties and has been shown robust to highly noisy data.  
 
Body
 
Optimizing the critical computational aspects of near infrared tomographic imaging  
 
The image resolution and contrast in Near-Infrared (NIR) tomographic image reconstruction are affected by 
parameters such as the number of boundary measurements, the mesh resolution in the forward calculation and 
the reconstruction basis. The magnitude of the total sensitivity was analyzed to find the spatial variation for a 
given problem, and the field response of the domain becomes more uniform by increasing the sensitivity to 
deeper regions, while suppressing the hypersensitivity near the external boundaries.  This is achieved with an 
increase in the number of measurements. 
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Using singular-value decomposition (SVD) and example reconstructed images, numbers of 16 or 24 fibers are 



sufficient for imaging the 2D domain.  The number of useful measurements actually decreases exponentially 
with the number of measurements used, and the number of useful singular values increases only as the 
logarithm of the number of measurements. For this 2D reconstruction problem, given a computational limit of 
10 sec per iteration, leads to choice of forward mesh with 1785 nodes and reconstruction (pixel) basis of 30x30 
elements. 
 

Figure 2: The reconstructed absorption coefficient distribution for
the cylindrical object with a spherical absorption 

inhomogeneity (diameter of 15mm and contrast 2:1 with respect 
to background) located at x, y and z locations (a) (0,0,0), 

(b) (30,0,0) and (c) (30,0,10). The three columns of images show 
the results achieved with the three different data collection schemes

The use of three fundamentally different 
data collection strategies for three-
dimensional (3D) NIR tomography was 
compared. Given a 3D NIR imaging 
problem, using a single plane of data can 
provide useful images if the anomaly to be 
reconstructed is within the measurement 
plane. However, if the location of the 
anomaly is not known, 3D data collection 
strategies are very important. The 
recovered quantitative accuracy of the 
anomaly region decreases (approximately 
10%) with the addition of out-of-plane data 
relative to in-plane data. Usage of single-
plane of data gives slightly better 
quantitative accuracy, if the anomaly lies in 
the data acquisition plane. Further the 
quantitative accuracy of the reconstructed 
anomaly increased approximately from 
15% to 89% as the anomaly moved from 
the centre to boundary, respectively. The 
data supports the idea that the use of in-
plane data in the 3D data collection 
strategies may be sufficient for the 3D NIR 
imaging.  
 
Complete work along with the methods 
employed and detailed discussion of the 
results given in the appendix [4] 
(Yalavarthy et al, Opt. Express 14, p. 6113-6127, 2006). 
 
 
Usage of structural a-priori information 
 
NIR tomography combined with conventional imaging modalities (MRI, CT and Ultra Sound) has been a very 
active area of research. These hybrid systems show superior performance in terms of qualitative (resolution) 
and quantitative accuracy compared to stand-alone systems. But still there is lot of ambiguity in utilizing the 
spatial information from these high spatial resolution images into NIR tomography (coregistration). This work 
develops a simple framework to incorporate structural a-priori information. Simple weight matrices that have 
Laplacian-type or Helmholtz-type structures that are derived from a-priori information have been developed. It 
has been shown that utilization of structural information using these weight matrices will not bias the 
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Figure 3: Reconstruction results with the usage of imperfect structural priors using  
different reconstruction techniques. 

reconstruction problem towards imperfect structural priors. Usage of imperfect a-priori information in a 
parameter reduction (i.e. hard-priors) in the imaging field through the enforcement of spatially explicit regions 

gives erroneous results. In the phantom 
experiments, it is shown that the Helmholtz type 
of regularization matrix gives the best estimate of 
the scattering parameter and the Laplacian 
provides best estimate for the absorption 
parameter. Overall, usage of structural-priors 
improve the reconstructed image quantitative 
accuracy by at least a factor of two.  
 
Details of the implementation along with analysis 
of results given in the appendix [5] (Yalavarthy et 
al, IEEE Trans. Med. Imag., 2006). 
 
 
 
 
 

 
Generalized Least-Squares (GLS) minimization 
 

 

 
Figure 4: Reconstruction results using different minimization techniques with 3% 
noise in the data. 

DOT involves recovery of the 
distribution of optical 
parameters by matching the 
experimental data with 
modeled data (Levenberg-
Marquardt (LM) 
Minimization). A variation of 
this approach by adding the 
parameter field to the 
minimization function is done 
through Tikhonov 
regularization, where the 
regularization parameter is 
chosen to overcome the ill-
conditioning of the problem. In 
this work, a generalized 
framework for DOT was 
developed including variance 

of the data and parameters as weight matrices. These weight matrices can also include the structural information 
obtained by MRI, Ultrasound or X-ray imaging. These weight matrices, include the system noise characteristics 
and expected size of optical parameters and constraints for the imaging problem and make the inversion routine 
more robust to noise. This also makes the imaging problem more stable. It is also important to note that 
Tikhonov regularization becomes a special case of the Generalized Least-Squares (GLS) formulation. This GLS 
estimation of optical properties has been shown to be very robust to noise and proven to be stable over 
iterations. 
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Complete formulation along with results is given in the appendix [6] (Yalavarthy et al, Med. Physics, 2007).   
 
Key research accomplishments 
 

• Optimization of computational aspects of DOT image reconstruction (especially, data-collection 
strategy) 

• Effective way of incorporating structural priors into NIR-DOT image reconstruction procedure 
• Generalized least squares minimization formulation and extensive testing of the algorithm in simulations 

 
Reportable outcomes 
  
First year of this training program has lead to two peer-reviewed journal publications and a number of 
conference presentations (and proceedings papers as well). In detail: 

1. Poster presentation at Optical Society of America Biomedical Optics Topical Meeting, Florida, March 
19-22, 2006. 

2. Poster presentation at Network for Translational Research Optical Imaging Network (NTROI) Retreat, 
Hyatt Regency Newport Beach, CA, June 22-24, 2006. 

3. Oral presentation the International Society for Optical Engineering (SPIE) BiOS-2007 in Photonics 
West-2007, San Jose, California, 20-25 January 2007. 

 
Conclusions 
 
This project is part of continuing effort to develop methods/algorithms for three-dimensional alternative breast 
imaging modalities at Dartmouth. Some important miles stones in the project include completing the work on 
optimizing the NIR data-collection strategies in 3D (completing Aim-1). A framework to incorporate the 
spatial-priors in to the NIR image reconstruction procedure was developed and also proven to be effective even 
in case of imperfect spatial priors, which is part of Aim-2.  Moreover, a new algorithm that takes into account 
noise characteristics of the instruments was developed and tested extensively in the simulation studies. 
Preliminary 3D reconstruction results using this new algorithm show improved quantitative accuracy compared 
to the traditional image reconstruction techniques. Finally steps are taken towards parallelizing the codes 
developed here to reduce the run time and memory requirements. 
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Abstract:  The image resolution and contrast in Near-Infrared (NIR) 
tomographic image reconstruction are affected by parameters such as the 
number of boundary measurements, the mesh resolution in the forward 
calculation and the reconstruction basis. Increasing the number of 
measurements tends to make the sensitivity of the domain more uniform 
reducing the hypersensitivity at the boundary. Using singular-value 
decomposition (SVD) and reconstructed images, it is shown that the 
numbers of 16 or 24 fibers are sufficient for imaging the 2D circular domain 
for the case of 1% noise in the data. The number of useful singular values 
increases as the logarithm of the number of measurements. For this 2D 
reconstruction problem, given a computational limit of 10 sec per iteration, 
leads to choice of forward mesh with 1785 nodes and reconstruction basis of 
30×30 elements. In a three-dimensional (3D) NIR imaging problem, using a 
single plane of data can provide useful images if the anomaly to be 
reconstructed is within the measurement plane. However, if the location of 
the anomaly is not known, 3D data collection strategies are very important. 
Further the quantitative accuracy of the reconstructed anomaly increased 
approximately from 15% to 89% as the anomaly is moved from the centre 
to boundary, respectively. The data supports the exclusion of out of plane 
measurements may be valid for 3D NIR imaging. 

©2006 Optical Society of America 

OCIS codes: (170.0170) Medical optics and biotechnology; (100.3190) Inverse problems; 
(170.3660) Light propagation in tissues; (170.4580) Optical diagnostics for medicine; 
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1. Introduction 

In the recent years, there has been a heightened interest in near-infra-red (NIR) optical 
tomography, for applications such as diagnostic breast cancer imaging [1-3] and for brain 
function assay [1, 4, 5].  In NIR tomography, the aim is to reconstruct interior optical 
properties of the tissue under investigation from a finite, yet incomplete set of transmission 
measurements taken at the tissue external boundaries. The reconstructed optical properties can 
give clinically useful information regarding tissue physiology and state, such as chromophore 
concentration and oxygen saturation. Typically, the optical source light used for excitation in 
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NIR studies is delivered through optical fibers and the transmitted light is also collected 
through the same or additional fibers which are in contact with the external surface of the 
tissue. Using these measurements, distributions of wavelength dependent absorption and/or 
scattering coefficients of the tissue are reconstructed using a model-based iterative algorithm. 
NIR studies have the advantage of being non-invasive, non-hazardous and can therefore be 
applied repeatedly to investigate functional changes in tissue over a prolonged time. 

The dominance of light scattering in tissue at NIR wavelengths makes optical tomography 
inherently more difficult in the sense that light becomes diffuse within millimeters of travel, 
reducing the resolution of the reconstructed images. The image reconstruction procedure (i.e. 
the inverse problem) is non-linear, ill-posed and ill-conditioned [6] and to improve image 
reconstruction, the number of measurements are generally increased, to increase the amount 
of independent information. However due to experimental set-up constraints, such as the light 
collection strategy, source and detector fiber size and the imaging domain geometry, the total 
number of boundary measurements that can be taken from is often quite limited. In addition, 
there are constraints on the data acquisition and computation time that need to be considered 
for the specific application in which NIR light is used. 

There have been some limited studies [7-11] on optimization of the fiber positions and 
measurements to get the best possible image resolution and contrast in NIR tomography. 
More specifically, Culver et. al [11] have showed that singular value decomposition (SVD) 
analysis of the weight matrix (also known as the Jacobian or sensitivity matrix) can be used to 
optimize detector placement in the reflectance and direct transmittance geometries of a 
homogeneous slab medium, and indicated that this could be extended to arbitrary geometries 
with heterogeneous tissue volumes. However, there remain many unknowns regarding the 
appropriate number of measurements required to get a sufficiently good image given the 
practical constraints of measurement number and image recovery algorithm, which is the 
subject of this paper. Furthermore, few studies have specifically investigated the effect of 
mesh resolution in both the forward and inverse calculations and very little is known about the 
quantitative increase in accuracy which is a direct result of mesh resolution and appropriate 
reconstruction bases. This work is an attempt to answer questions regarding the limited 
increase in number of measurements, more specifically benefits from the increased amount of 
information as well as investigating aspects that will have effects on image reconstruction 
procedure and resolution as well as the contrast of the reconstructed image. 

In the present work, both a two dimensional (2D) circular domain and a three dimensional 
(3D) cylindrical geometry are investigated since most investigations to date have used either 
of these geometries for system and algorithm evaluation. Initially the effect of mesh resolution 
is investigated in the forward problem by comparing the Jacobian cross-section for various 
resolution 2D meshes to show improvements in numerical accuracy. Next the effect of 
increasing the number of measurements upon the resulting reconstructed image using 
singular-value analysis is investigated. Results regarding the optimized reconstruction basis 
are presented for the given 2D model, and the impact in the Root Mean Square (RMS) error of 
increased spatial sensitivity is presented as a function of increasing number of measurements. 
Finally a case-to-case analysis is shown by increasing the number of measurements in image 
reconstruction procedure and comparing the underlying image errors within the reconstructed 
images. 

Since 3D problems have more degrees of freedom (unknown parameters), they are highly 
ill-determined as compared to the 2D problem.  But NIR optical tomography utilizes the data 
from the 3D tissue volumes and therefore should be treated as a 3D imaging problem. Since 
light propagation in tissue is physically spread in all directions, 3D models are known to be an 
accurate prediction of the light fluence, whereas 2D models are simple yet inaccurate at 
predicting the interior fluence distributions [4, 12-17]. In order to further advance NIR optical 
tomography into a suitable and accurate clinical imaging modality, it is important to develop 
fully 3D imaging tools, yet, the major challenge in this task is to determine how to acquire 
large data sets which overcome the inherent limitation of the 3D problem being ill-determined 
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[18]. That is, to improve image reconstruction quality in 3D, the number of measurements can 
be increased as mentioned in 2D case, even here these measurements are quite limited.  

For the chosen 3D cylindrical geometry, for example, acquiring experimental data from 
three different planes of fiber setup improves the reconstructed image of the entire domain as 
compared to one single plane of data, as there are greater numbers of measurements providing 
a larger set of sampling of the entire volume of interest. There are many strategies to increase 
measurement number and it is not clear which present the best improvement in the final 
image. Specifically, this work examines effects of different measurement strategies for 3D 
NIR tomography by presenting and quantifying the underlying effects of using a single plane 
of tomographic data as compared to three planes of tomographic data. Within the latter case, 
this work also presents, quantifies and discusses the benefits, limits and losses due to the 
measurement of in-plane data as compared to out-of plane data and will compare and contrast 
these data collection geometries from the prospective of gain and loss in the reconstructed 
image quality and respective computation time. 

2. Methods 

Conventional numerical methods for the forward calculations in NIR imaging use the Finite 
Element Method (FEM), which is considered as a flexible and accurate approach to modeling 
heterogeneous domains with arbitrary boundaries. Light transport in scattering tissue can be 
accurately described by the Diffusion Approximation (DA) to the Radiative Transfer Equation 
(RTE) [19]: 

0- . ( ) ( , ) ( ) ( , ) ( , )a

i
r r r r q r

c

ωκ ω μ ω ω⎛ ⎞∇ ∇Φ + + Φ =⎜ ⎟
⎝ ⎠

                  (1) 

where ( , )r ωΦ is the photon density at position r and modulation frequency ω  (100 MHz in 

this work), and κ = 1/[3(μa + μs
/)], the diffusion coefficient, where μa and μs

/ are the 
probabilities per unit length of absorption and transport scattering, respectively, and 

0 ( , )q r ω is an isotropic source term. The Robin (Type III) boundary condition is used which 

best describes the light interaction from a scattering medium to the external air boundary [20]. 
The calculated boundary data values with a frequency domain system are the amplitude and 
phase of the signal, from which the diffusion and absorption coefficients can be 
simultaneously reconstructed.   

For the inverse problem, a small change in boundary data is related to a small change in 
optical properties through the Jacobian matrix of values. The Jacobian matrix for 
reconstructing both the unknowns using two different data-types is calculated using the 
Adjoint-method [21], and has dimensions of (2×S×D) by (2×N), where S and D are the 
number of sources and detectors corresponding to each source respectively. N represents the 
number of nodes in the mesh used in the forward calculation. Here the Jacobian maps the 
changes in log amplitude and phase (2xSxD) to both absorption and diffusion changes at each 
node of the FEM model (2xN). The Jacobian which maps the change in detected signal to 
image space has four parts: 
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In all our analysis, only the J2 section is considered (dimension of (S×D) by N), which maps a 
small change in the absorption coefficient to a small change in measured log intensity of the 
signal. Since all kernels of the complete Jacobian show similar results, the discussion is 
limited to the results of J2, and shall henceforth be referred to as J.  

In the reconstruction procedure presented, a modified Levenberg-Marquadt algorithm is 
used for calculating the estimates of μa, which is an iterative procedure [10] solving:  
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[Δμa] = [JTJ + λI]-1. JTb       (3) 

Here [Δμa] is an update vector for the absorption coefficient, I is the identity matrix and λ is a 
regularization parameter. Also, b = [y - F(μa)], where y is the measured (or simulated) 
heterogeneous boundary data and F(μa) is the forward data for the current estimate of μa. In 
all of the presented work using simulated data, 1% noise was added to the amplitude, which is 
a typical noise observed in experimental data [2].  

For the 2D analysis a circular model with a diameter of 86 mm centered at (0, 0) and with 
homogeneous optical properties of μa = 0.01 mm-1 and μs

/ = 1.0 mm-1 is considered. The light 
collection/delivery fibers are arranged in a circular equally spaced fashion, where one fiber is 
used as the source while all other fibers are used as detectors, to give ‘P’ number of 
measurements (where P= M(M-1), where M is number of fibers). The source is a Gaussian 
source of Full Width Half Maximum (FWHM) of 3mm, and it is placed one transport 
scattering length within the external boundary.  
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Fig. 1. Schematic diagram of data collection geometry used for the 3D cylindrical model. 

For the 3D analysis, a cylindrical medium with a diameter of 86 mm having height of 100 
mm centered at (0, 0, 0), with homogeneous optical properties of μa = 0.01 mm-1 and μs

/ = 1 
mm-1 is used (Fig. 1). The light collection/delivery fibers are arranged in a circular and 
equally spaced fashion and are in either a single plane of 16 fibers or 3 planes of 16 fibers per 
plane, totaling 48 fibers. Specifically three different strategies for data collection are 
considered: 

(a). Single layer data: The 16 fibers are arranged in a circular and equally spaced fashion in a 
single Layer-I (Fig. 1), where one fiber is used at a time as the source while all other fibers are 
used as detectors, to give 240 (16x15) amplitude measurements. 

(b). Three layers of in-plane data: The 48 fibers are arranged in a circular equally spaced 
fashion in all three layers (Layers-I, II & III in Fig. 1), giving 16 fibers per plane, where one 
fiber is used at a time as the source while only those fibers in the same “source fiber layer” are 
used as detectors, to give 720 (3x16x15) amplitude measurements. 

(c). Three layers of out-of-plane: Same as above, except when one fiber is used at a time as 
the source, all other fibers in all three planes are used as detectors. This leads to 2256 (48x47) 
amplitude measurements. 

For the image reconstruction process, an iterative update to the Jacobian matrix was 
computed, after each successive image estimation. At each iteration, the objective function 
was evaluated to estimate the projection error. The reconstruction procedure was then stopped 
when the projection error decreased by less than 3%. 
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Fig. 2. The sensitivity (Jacobian) contour plot of log amplitude and μa for a source (S) and 
detector (D), which are diagonally opposite to each other as shown, calculated on a circular 
mesh of 9664 nodes. 

2.1. 2D Mesh Resolution 

In FEM the domain is divided into finite discretized sub-domains wherein the numerical 
accuracy and stability depends highly on this discretization (mesh resolution). Since the 
Jacobian represents the sensitivity of the detected signal to a small change in optical 
properties, the numerical accuracy of this value is crucial component of the image 
reconstruction problem, to study the effect of mesh resolution in 2D case, we choose different 
resolution meshes (with number nodes ranging from 150 to 4617 nodes) along with a high-
resolution mesh of 9664 nodes for calculation of Jacobian. The Jacobian with a diagonally 
opposite source and detector is used, as shown in Fig. 2, from which the RMS error is 
calculated for each mesh with respect to the high-resolution mesh. The RMS error is 
calculated by interpolating the Jacobian of each mesh unto a uniformly distributed grid, 
allowing direct comparison of each result. Since the Jacobian represents the sensitivity of the 
detected signal to a small change in optical properties, the numerical accuracy of this value is 
a crucial component of the image reconstruction problem. Here the highest resolution mesh 
provides the most accurate and numerically stable solution, therefore the calculated RMS 
error indicates the numerical accuracy of each lower resolution mesh. The computation time 
taken for calculation of Jacobian and forward data is also noted as a function of mesh 
resolution. All the computations were carried out on Pentium-IV 2.5 GHz processor with 2 
GB of RAM. 

2.2. Singular-Value (SV) analysis 

Singular-Value (SV) analysis for the Jacobian matrix is explained in detail elsewhere [10]. 
Using SV-analysis, the Jacobian is decomposed into: 

 
 J = USVT                                                          (4) 

where, U & V are orthonormal matrices containing the eigenvectors of J and S is a diagonal 
matrix containing the singular values of J. Vectors of U and V correspond to the modes in the 
detection space and image space, respectively, while the magnitude of the singular values in S 
represents the importance of the corresponding eigenvectors in U and V. More nonzero 
singular values indicating more modes are effective in between the two spaces, which bring 
more detail and improve the resolution in the space. There are normally P nonzero singular 
values in the diagonal matrix and these values are sorted in decreasing order. Typically only 
those singular values above the noise level (in this study, 1 % noise in amplitude) are used, as 
they contain the only useful information in the matrix. Thus, it is possible to determine 
whether increasing the number of measurements gives rise to an increase in the number of 
useful singular values, which indicates improvement in the recovered images. 
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In 2D, this analysis was applied to two separate cases: (1) a homogeneous case with optical 
properties as given before, and (2) a heterogeneous case which mimics breast optical 
properties [22], with properties of fibro-glandular layer being μa = 0.003 mm-1 and μs

/ = 0.95 
mm-1 and having diameter of 66 mm and fatty layer surrounding it having μa = 0.006 mm-1 

and μs
/ = 1.1 mm-1 with a thickness of 20mm. The number of useful singular values above the 

noise level were calculated as the number of measurements was increased. The mesh that was 
found to have an optimum resolution from the previous analysis of the Jacobian (Sec. 2.1) was 
used for these analysis. For both these cases, the percentage of useful measurements with 
respect to total number of measurements was calculated as:  

 
Useful number of singular values

Useful measurements (in %) = x100    
Total number of singular values

⎡ ⎤
⎢ ⎥
⎣ ⎦

  (5) 

Additionally, the effect of mesh resolution was studied for its impact on the number of 
independent boundary data points with an increase in number of measurements by calculating 
the rank of the Jacobian, which is defined as the maximum number of linearly independent 
rows/columns of a given matrix. As each row of the Jacobian indicates each measurement, the 
rank of the Jacobian indicates the total number of independent measurements. 

Image reconstruction consists of two separate, yet equally important parts; the forward 
model and the inverse model. For the forward model, the mesh used in FEM needs to be such 
that to ensure numerical accuracy, as already discussed. For the inverse problem, however, the 
goal is to reduce the number of unknowns for the iterative update by the use of a 
reconstruction basis [23]. Therefore it is important to investigate the effects of various 
reconstruction basis degrees of freedom on the reconstruction. Various reconstruction basis 
can be used, such as second mesh basis [24], pixel basis [23] or adaptive [25, 26] . With this 
goal, a reconstruction basis was optimized for the given 2D problem by looking at the number 
of useful singular values for various pixel (reconstruction) basis. A linear pixel basis of having 
100 (10 by 10) elements to 1600 (40 by 40) elements was used and the Jacobian was mapped 
to this basis for the analysis. 

Table 1. The RMS error (with respect to the fine mesh of 9664 nodes) in the Jacobian cross-section from center to 
boundary, (indicated by dashed line in Fig. 2) at y = 0 mm. This is tabulated as a function of mesh resolution, or 
number of nodes in the mesh. Last two rows show the computation time taken for calculation the Jacobian and 

Forward data for 16 source-detector pairs (240 measurements). For the fine mesh of 9664 nodes the computation time 
for Jacobian and Forward data is 98.1 sec and 28 sec respectively.  

Nodes 150 425 1360 1785 2683 3047 3569 4617 
RMS error 60.56 27.84 5.06 4.84 2.57 2.15 1.85 1.07 
Jacobian 

Computation 
Time (in Sec.) 

1.1 2.5 7.8 10.1 15.2 17.8 20.8 38.1 

Forward data  
Computation 
Time (in Sec.) 

0.1 0.3 0.9 1.2 1.9 2.2 2.6 9.8 

2.3. Reconstruction examples 

In order to understand the effect of increasing the number of measurements on total sensitivity 
for a given 2D model the magnitude of the Jacobian was examined as a function of number of 
measurements. To achieve this, the horizontal cross-section of the whole Jacobian was 
plotted, which was summed up over all measurements, from center to boundary, and 
examined as the number of measurements increased. Since the Jacobian provides relative 
sensitivity, a cross-section plot was normalized in each case with respect to its magnitude at 
the center of the model and calculated as a function of number of measurements (56 to 4032). 
For the 3D model, the cross-section of the total Jacobian was normalized with respect to its 
magnitude at the center of the model (as in the 2D case), for each case of the three different 
data collection strategies. Finally, for the 2D model, only the absorption coefficient was 
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reconstructed with an increasing number of measurements of an object with absorption 
inhomogeneity at various positions of domain using log of amplitude data. A circular 
absorption anomaly of diameter of 10 mm was used having a contrast of 2:1 compared to its 
background. We used the optimal forward mesh along with optimal reconstruction basis for 
the reconstruction procedure. A total of 2 positions of absorption inhomogeneity were 
considered with it center at (x,y) of (0, 0), and (30, 0) for various number of measurements 
starting from 56 to 4032. 

 
  

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

Fig. 3. Singular value analysis of homogeneous and heterogeneous 2D circular models. (a). 
Plot of the useful singular values versus number of measurements. (b). Plot of percentage of 
useful measurements versus the total number of measurements. (c). Plot of the Rank versus 
number of measurements is shown for a range of mesh nodes. (d). Plot of the number of useful 
singular values versus number of measurements is shown, for various reconstruction bases. 

 
For the 3D case, a spherical absorption anomaly of diameter of 15 mm was assumed 

having a contrast of 2:1 compared to its background. A total of 3 positions of absorption 
inhomogeneity were considered with its center at x, y and z of (0,0,0), (30,0,0) and (30,0,10). 
The anomalies were reconstructed using the noise added data (1% in amplitude) simulated 
from the three different fiber location strategies. Full Width at Half-Maximum (FWHM) was 
measured for each of the peaks in the X-Y and Z-Y planes as well as the total computation 
time for reconstruction process. 

Table 2. The number of useful measurements above the 1% expected noise level, is shown for the 2D circular and 3D 
cylindrical models, having 16 source and detector fibers with one or three planes of data collection.  The two upper 
rows have only 1 plane of collection, whereas the 2nd last row has 3 planes of collection but not between the planes, 

and the last row has 3 planes of data collection with complete out of plane measurements. 

 Number of 
Unknowns 

Number of 
Measureme

nts 

Number of 
Useful Singular 

values 

Useful 
measurements 

(%) 

Magnitude of largest 
singular value 

2D 1785 240 91 37.92 796.4 

3D 1layer 20163 240 107 44.58 117.1 

3D 3layer in-
plane 20163 720 269 37.36 164 

3D 3layer out-
of-plane 20163 2256 328 14.54 304.6 

3 Results 

Figure 2 shows a sensitivity plot of log amplitude and the absorption coefficient using a 2D 
mesh with 9664 nodes for a source and detector which are diagonally opposite to each other. 
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Table-1 shows the RMS error with respect to the high resolution mesh in the horizontal cross-
section (as indicated by the dotted line in Fig. 2) using the method described earlier. The RMS 
error calculated here was also calculated along different cross-sections of the model and a 
similar trend was seen. The mesh with 1785 nodes was found to have an RMS error of less 
then 5% as compared to the finest mesh. 

 
Fig. 4. Comparison of Jacobian cross-section with respect to measurement number. (a). The 
horizontal cross-sectional plot of the sum of 2D circular Jacobian matrix values, from center to 
the boundary at y = 0 mm. (b) The normalized sum of 2D circular Jacobian matrix values, with 
respect to the value at the center (at x = 0 mm, y = 0 mm). The legend gives number of 
measurements associated with each plot.  

The 2D mesh with 1785 nodes was used for the calculation of the Jacobian and the 
expected noise level in the amplitude measurements was assumed to be 1%. For both the 
heterogeneous and homogeneous 2D cases, the number of useful singular values above the 
noise level were calculated, and the results are shown in Fig. 3(a). Figure 3(b) is a bar chart 
showing useful measurements in percentage [given by Eq. (5)] for each set of measurements. 
Figure 3(c) is a plot of the rank of the Jacobian versus the total number of measurements for 
meshes having different resolution starting from 150 to 3569 nodes versus number of 
measurements. The Jacobian calculated is also mapped onto a reconstruction (pixel) basis 
ranging from 10 × 10 to 40 × 40. The number of useful singular values as function of pixel 
basis elements, for each set of measurements, are plotted in Fig. 3(d). Finally, for the 2D case, 
Fig. 4 shows the total sensitivity distribution at the mid-axis cross-section, as a function of the 
number of measurements.  Table 2 shows the number of useful singular values of the 3D 
model Jacobian which are above the noise level (1%) for the three different strategies, and 
indicates the effective number of measurements which will be contributing to the 
reconstructed image space and quality. The number of useful singular values is higher for the 
three layer out-of-plane strategy. The useful percentage of measurements is higher for the 3D 
single plane of data, whereas the condition number is very high for the 3D three-layer out of 
plane case. Similar data is also included using the 2D circular geometry for comparison 
purposes, with 240 measurements and the same corresponding optical properties as the 3D 
model. 

The plots of the 3D Jacobian magnitude as normalized to the value at the center of the 
model are shown in Fig. 5. These plots shows that, all the three strategies of data collection in 
3D are hypersensitive (in X & Y direction) at the boundary. Moreover this is pronounced for 
the 3D single-plane case. In the Z-direction (not shown) it was found that, as expected that, 
the sensitivity decreases as the position moves from centre to boundary for all the three cases.  
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Z= 0 mm Z= 5 mm 

  
Z= 10 mm Z= 15 mm 

Fig. 5. The normalized cross-section in the X-Y plane, showing the total sensitivity across the 
dotted line in Fig. 2, from x= 0 mm to x = 43 mm (center to boundary) at Y = 0 mm normalized 
with respect to the sensitivity at the origin, (i.e. X = 0, Y = 0 & Z = 0 mm). 

 

Original μa 56 240 552 992 

 
1560 2256 3080 4032  

 

 
 

 
Fig. 6. The reconstruction of the μa distribution, using noisy simulated data of log amplitude, 
for a circular object with an absorbing inhomogeneity at the center. Different numbers of 
measurements were used as denoted above each image, ranging from 56 up to 4032 data points.  
The forward mesh was 1785 nodes and the pixel basis consisted of 30x30 elements. The 
original μa distribution is shown as the first image. 

The 2D reconstruction of a circular object with a centralized absorption anomaly of 
diameter of 10mm using different number of measurements, along with original μa 
distribution, is shown in Fig. 6. The contrast of the inhomogeneity to background is 2:1 and 
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for these reconstructions a pixel basis of 30 x 30 elements is used, with a forward mesh 
consisting of 1785 nodes. Figure 7 shows the plot of logarithm of rms error in the horizontal 
cross-section (as sown by dotted line in Fig. 6) as a function of measurement number. The 
legend of the figure gives the position of the inhomogeneity (diameter of 10mm).  

Table 3 summarizes the results of the 3D reconstruction. Figure 8(a) shows the 
reconstructed absorption coefficient distributions for a spherical absorption inhomogeneity 
(diameter of 15 mm) located at (0, 0, 0) with a contrast of 2:1 to background, using the data 
collected from the three strategies. Figure 8(b) shows the results of the same effort with a 
spherical inhomogeneity located near to the boundary (30, 0, 0). The results show that the 
quantitative values of the anomaly increases as the anomaly is moved from centre to boundary 
in X & Y direction. The anomaly for this location is reconstructed with 89% quantitative 
accuracy compared to the 15% accuracy for central location. Finally the reconstructed 
absorption coefficient distribution for a spherical absorption inhomogeneity (diameter - 15 
mm), which is centered at (30, 0, 10) are shown in Fig. 8(c) and it can be seen that single layer 
case reconstructed the anomaly in the wrong location. Here, both the in-plane and out-of-
plane strategies are able to give up to 84% quantitative accuracy (Table 3). 
 

 
Fig. 7. A plot of logarithm of rms error in the horizontal cross-section of μa at y = 0 (as shown 

in original μa distribution of Fig. 6) versus number of measurements for various positions of an 
absorption inhomogeneity.  These calculations used 1785 nodes in the mesh of the forward 
problem and a pixel basis of 30x30 elements in the reconstruction.  

4 Discussion 

The decrease in the RMS error for the horizontal cross-section of the 2D Jacobian for a given 
source-detector (diagonally opposite each other) for a mesh greater than 1500 nodes as 
compared to 9664 nodes (Table-1) is below 5%. It should be noted that the other kernels of 
the Jacobian, for example J3 ( θ

κ
∂
∂

), showed better accuracy (2%) when the mesh had 1785 

nodes or greater. As with many iterative reconstruction problems, optical tomography requires 
repeated forward calculations and re-computation of the Jacobian, thereby increasing mesh 
resolution which further implies increase in computational time, which is clearly evident from 
last two rows of Table 1. A computation limit of 10 seconds per iteration, lead to a choice of 
mesh resolution with 1785 nodes for the forward problem in two-dimensional case, and 
extending this same level of resolution to 3D would require nearly 80,000 nodes, which is 
near the limit of what can be done computationally.  Thus much of the 2D study presented 
here was run at the level of 1785 nodes.  Since the computation of the Jacobian using the FEM 
relies on the discretization of the domain and the accuracy of the numerical model depends on  
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Table 3. The computation time and accuracy of the 3D reconstruction is shown for the three 
different data collection strategies, along with three different locations of the anomaly for each. 

 

Strategy 
Position of 

anomaly 
(original) 

Iterati
ons 

Total 
Computation 

time (s) 

Quantitative 
accuracy (%) of 

the reconstructed 
anomaly 

FWHM 
along X-

axis (mm) 

FWHM 
along 
Z-axis 
(mm) 

(0,0,0) 11 3179 15% 16.1 25.2 
(30,0,0) 14 4046 89% 17.2 23.3 3D: 1layer 

(30,0,10) 10 2890 - - - 
(0,0,0) 14 8022 14% 16.5 25.3 

(30,0,0) 14 8022 80% 13.1 18.7 
3D 3layer in-

plane 
(30,0,10) 12 6876 110% 11.2 18.6 

(0,0,0) 6 10926 11% 23.7 24.1 
(30,0,0) 9 16389 78% 13.6 18.9 3D 3layer 

out-of-plane 
(30,0,10) 8 14568 84% 13.2 18.7 
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Fig. 8. The reconstructed absorption coefficient distribution for the cylindrical object with a 
spherical absorption inhomogeneity (diameter of 15mm and contrast 2:1 with respect to 
background) located at x, y and z locations (a) (0,0,0), (b) (30,0,0) and (c) (30,0,10).  The three 
columns of images show the results achieved with the three different data collection schemes.   

(C) 2006 OSA 26 June 2006 / Vol. 14,  No. 13 / OPTICS EXPRESS  6124



this discretization and the associated integration of the shape functions, the resolution of the 
mesh and the associated optical properties will affect these results. For example, if the 
absorption coefficient is much smaller, then lower resolution meshes may be adequate, as the 
problem becomes more energy conserving, whereas for a higher absorption or scattering 
problem, a higher resolution mesh will be needed to ensure numerical accuracy within each 
FEM element for a lossy problem. Note also that for spectral reconstruction [3] with six 
wavelengths data, each iteration takes about 30 sec for 1785 nodes mesh. 

For a heterogeneous or homogeneous 2D case, number of useful singular values, which 
are above the noise level (1% in amplitude) showed similar trends and behavior with 
increasing numbers of measurements, as evident from Fig. 3(a). Further, the percentage of 
useful measurements (useful singular values) drops exponentially as the number of 
measurements is increased, Fig. 3(b). It is worth noting that for a heterogeneous model, since 
light propagation becomes more complex, and in this case more diffusive, the total number of 
useful measurements is slightly lower than that of homogeneous model. In this work, useful 
singular values are defined as the ones which are above noise level (1%). This is used only for 
optimizing the parameters used in the reconstruction procedure, but in the actual 
reconstruction procedure, regularization is used to reduce the condition number.  

Next, the effect of the 2D mesh resolution was investigated, for it’s impact upon the 
number of independent available measurements. From Fig. 3(c), it is evident that if the 
degrees of freedom (mesh resolution) in the forward problem is less than the total number of 
measurements, then increasing the number of measurements does not increase the number of 
independent measurements (i.e. the rank), since the rank is predominantly restricted by the 
number of nodes in the mesh. For example, given a system from which only 240 
measurements are available, any mesh which has a resolution of 240 nodes or more will give 
the same number of independent measurements. Therefore no additional measurements can be 
gained in terms of independent information by increasing the mesh resolution. Given a 2D 
mesh of 1785 nodes, for example, no considerable gain in independent data can be obtained 
when the number of measurements are increased above 1560 (40 source and detectors). At 
this point, it will be worth remembering that, in real time there is a physical constraint on 
number of measurements, because of the physical geometry and fiber size. To take an 
example, for a circular test phantom of 86 mm diameter and fiber of 6 mm diameter, no more 
than 40 fibers (which corresponds to 1560 measurements) can be arranged around the outer 
boundary of domain.  However this issue becomes more important perhaps for non-contact 
imaging systems in which the number of source-detector locations can be arbitrarily large. 

Using a 2D mesh of 1785 nodes, the effect of an increase in the reconstruction (regular 
pixel) basis resolution upon reconstruction was investigated [Fig. 3(d)]. An increase in pixel 
basis elements increases the number of useful singular values, but there is no significant 
improvement in the pixel basis from 30×30 (900 elements) to 40×40 (1600 elements). This is 
very interesting, since one would assume that fewer degrees of freedom for the inverse 
problem would produce a better solution. But although the problem may become better posed, 
the rank will be similar to that shown in Fig. 3(d). However, these results indicate the best 
possible resolution obtainable is by using the 40 x 40 pixel basis and again these results will 
be dependent on the physical problem dimension and level of complexity. Figure 4 shows that 
increasing the number of measurements for a 2D model increases the sensitivity of the 
problem, as evident from magnitude plot of the Jacobian (calculated from 1785 nodes mesh). 
Also shown in Fig. 4 is a normalized plot, relative to the central value, and indicates that for 
fewer number of measurements, the sensitivity is maximal near the boundary and lower at the 
center, as expected. By increasing the number of measurements, eventually the 
hypersensitivity near to the boundary reduced and the sensitivity became uniform regardless 
of distance from boundary. Finally, it is observed that increasing the number of measurements 
above 552 (24 sources and detectors) did not result in any further improvement in the 
sensitivity distribution.   

For the 3D model, Table 2 shows that three layers of out-of-plane measurements yields a 
higher number of useful singular values, but the useful percentage of the total measurements 
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was below 15%. An increase in number of measurements means more data acquisition time 
and more computation time. Non-linear iterative image reconstruction procedures in NIR 
imaging use repeated calculation of the forward data. Therefore increasing the number of 
sources and measurements substantially increases the computation time. In comparing the 
three layer in-plane and three layer out-of-plane data collection strategies, having more than 
three times the measurements in the latter case improves the number of useful singular values 
only by 22%. The improvement in the number of useful singular values is not significant if the 
data acquisition time is considered as well as the computation time. The magnitude of the 
singular values indicates the importance of that eigenvector in the image space, which is 
directly related to reconstructed image contrast that can be achieved. To compare the 
magnitude of the largest singular value, even though it is at its highest for the three layer out-
of-plane strategy, it should be noted that only 3 of the singular values are above 164 
(magnitude of largest singular value of 3D 3layer-in-plane), indicating that there would not be 
dramatic differences in the reconstructed image contrast in both these cases. If the magnitude 
of largest singular value in 2D and 3D are compared, in 2D the magnitude is higher, whereas 
the number of useful singular values are lower than 3D, indicating that the modes that 
contribute to image space are fewer and the quality of the reconstructed image in 2D will be 
lower than 3D. Even though magnitude of the singular values dictate the contrast, the singular 
vectors associated with it will tend to affect the reconstructed image quality. The magnitude of 
the largest singular value in the 3D 3layer cases are the same because of the smoothness of the 
singular vectors in the case of 3D 3 layer: out-of-plane, the reconstructed image quality is 
better than the rest cases (Fig. 8). The FWHM analysis also confirms this. 

It should be noted that there is always a trade-off between image quality and computation 
time. Therefore having out-of-plane data increases the image resolution, but taking into 
consideration the overall computation time, this improvement is perhaps not so significant. 
The computation time per iteration is high in the case of out-of-plane data (computation time 
per iteration: 2D problem – 70 sec; single-layer – 289 sec; three layer: in-plane – 573 sec; 
three layer: out-of-plane – 1821 sec).  

Figure 5 indicates that for the 3D model with a single measurement plane case, the total 
sensitivity is higher near the boundary, as compared to the three plane data case and by 
increasing the number of measurements the sensitivity near the boundary is decreased.  The 
results show that although the sensitivity is still higher at the boundary with three planes of 
data acquired, there is no significant difference in the sensitivity pattern observed between 
three layer in-plane or out-of-plane strategies.  

Since only one component of the full Jacobian matrix, J2 in Eq. (2), has been examined 
here, images have also been reconstructed for μa using log amplitude data for a 2D forward 
mesh of 1785 nodes and a reconstruction basis 30 by 30 pixel basis. Noisy simulated data 
were generated for various radial positions of the absorption inhomogeneity with a contrast of 
2, relative to the background and having a diameter of 10 mm. The log of RMS error was 
calculated as the difference in the original and the reconstructed horizontal cross-sections of 
each image (Fig. 6) as a function of number of measurements and these were plotted in Fig. 7. 
The results show that, as evident from Fig. 7, although there is a decrease in the RMS error as 
the number of measurements is increased, the improvement in the reconstructed images is not 
significant for measurements greater than 552 (corresponding to 24 fibers). However, for a 
central anomaly, the RMS error continued to decrease with increasing number of 
measurements, whereas for an anomaly near the boundary the RMS error does not improve 
more than 0.5% with respect to 552 measurements. 

To study the effect of data collection strategies on the 3D reconstructed image, the FWHM 
(Full Width at Half Maximum) of the peaks for all the reconstructed cases have been 
calculated and compared, Table 3. As the inhomogeneity moves from the centre towards the 
boundary, the FWHM reduces for both of the three layer cases and it remains approximately 
the same for the single layer case. For example, when the inhomogeneity is placed at (30,0,0), 
Fig. 8(b), the FWHM (in the X-cross section) values for single layer is 17.2mm and for the 
three–layers in-plane and out-of-plane strategies is 13.1mm and 13.6mm respectively. It is 
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evident from the reconstruction examples that the quantitative values of the inhomogeneities 
increase as the object moves from the centre to boundary, which is in close match with 
Jacobian analysis above. Reconstruction of absorption using single layer data, is not accurate, 
in a case where the anomaly is not presented in the imaging plane, such a case results are 
presented in Fig. 8(c). In this case, single-layer reconstructed image shows the inhomogeneity 
at a false position (reconstructed: (30,0,0); actual: (30,0,10)). Most of the 3D NIR studies 
indicate that, the quantitative accuracy of the images will be poor due the partial volume 
effect in three dimensions[13,16,17] and these quantification can be greatly improved by the 
use of more sophisticated regularization and the addition of penalty terms into Eq. (3).  

5 Conclusions 

In this investigation, the mesh resolution and numerical accuracy in the 2D and 3D forward 
problems were examined, using specific data-collection geometries. Several choices such as 
domain size, optical properties and anomaly position and size were kept fixed, relative to 
typical breast cancer imaging situations. It was shown that increasing the number of 
measurements increases the total amount of information available, and these specifically 
enhance the recovery of the central region of the model, regardless of dimensionality. Further, 
by increasing the number of measurements, the rank of the problem (i.e. amount of 
independent useful information) may not increase if the degrees of freedom (i.e. number of 
nodes in the mesh) are low. Reconstruction basis plays an important role in the inverse 
problem and it has been found that a pixel basis of 30 × 30 is optimal for a typical breast 
imaging problem.  

More specifically for a 3D imaging problem, this work has shown the benefits and 
drawbacks of multi-plane data collection as well as the use of in-plane versus out-of-plane 
data measurements strategies. It has been shown that the use of single-plane of data in a 3D 
model is perhaps adequate, in terms of image quality, computation time and data collection 
time, if the anomaly being imaged is within the plane of measurements. However, if prior 
information such as plane of interest is not known, it has been shown that multi-plane data is 
crucial. The use of in-plane and out-of-plane data has been addressed and is shown that 
although the use of out-of-plane data provides more independent and useful information for 
image reconstruction, the magnitude of this additional information does not provide enough 
advantages worth the data acquisition and image computation time. 

Finally it is worth noting that the 3D study has been limited to 16 source/detection fibers 
per plane. The addition of more measurement fibers and/or investigation of a different image 
reconstruction basis, such as those performed for the 2D problem can be easily extended for 
the presented 3D problem. The technique and analysis described here can be used as a tool to 
improve resolution and contrast, given prior information about the domain being imaged. This 
specific study was undertaken to better understand the parameters and capabilities of existing 
breast imaging system at Dartmouth and to focus on software improvements which may 
increase its recovery of lesion information. 
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ABSTRACT

Near-Infrared (NIR) tomographic image reconstruction is a non-linear,

ill-posed and ill-conditioned problem, and so in this study, different ways

of penalizing the objective function with structural information were inves-

tigated. A simple framework to incorporate structural priors is presented,

using simple weight matrices that have either Laplacian or Helmholtz

structures. Using both MRI-derived breast geometry and phantom data, the

reconstructed results show that structural priors, which would be available

from multi-modality imaging, give superior results compared to having no

structural prior information. Quantification of the optical properties of the

tissue is more accurate and the structure of the tissue is also conserved by

incorporation of the structural information. More over, parameter reduction

(i.e. hard prior information) in the imaging field through the enforcement of

spatially explicit regions gives erroneous results (over-estimates the absorption

coefficient by 360% and under-estimates the scattering coefficient by 88%),

if the structural prior information from one of the regions is imperfect

by as little as 7% of the area. Even with the most accurate priors, this

parameter-reduction technique can over-estimate the scattering coefficient of

the tumor by over 100% as estimated by experimental studies. Incorporation

of less-restrictive prior (soft-prior) information can be achieved with either

Helmholtz or Laplacian structured regularization matrices. Using multi-

layered phantom data, it is shown that the Helmholtz type of regularization

matrix gives the best estimate of the scattering parameter and the Laplacian

provides best estimate for the absorption parameter. It is also proven that for

smaller values of the wave number, the Helmholtz and Laplacian structures

give similar estimates for optical properties. In the same framework, it is also

demonstrated that applying unreasonable constraints to the imaging problem

amplify the noise in the solution, leading into physiologically invalid estimates

of optical properties.
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1. Introduction

Near Infrared (NIR) optical tomography is a method that uses light in the 650-900nm

wavelength range to recover images of the internal spatial distribution of tissue optical

properties, absorption (or chromophore concentrations) and scattering parameters.1−3 When

imaged at multiple wavelengths, these quantities can be used to estimate tissue hemoglobin

and water concentration3 and have the advantage of being acquired non-invasively and

without ionizing radiation. The imaging procedure can be rapidly or repeatedly applied to

investigate physiological state, and systems can be integrated into conventional imaging

platforms such as X-ray mammography, Ultrasound and MRI.4−9 These hybrid systems

have been shown to achieve superior performance in terms of resolution and quantitative

accuracy which should provide more accurate physiological data from the tissue under

investigation.4−16 However, a fundamental question is how to utilize the spatial information

from the clinical system optimally to maximize the accuracy of NIR tomography. In this

study, the ability to improve the quantitative accuracy of regions imaged with NIR to-

mography was investigated, in the setting where prior spatial information is readily available.

This work explores image reconstruction strategies that take advantage of multimodality

image data, in particular combination of MRI with NIR optical tomography for breast

cancer imaging. MRI provides structural information at high spatial resolution (near

1 mm), whereas NIR imaging has relatively poor spatial resolution (near 4-7 mm).

Yet MR imaging would benefit from the molecular-specific signatures available through

NIR,3,16−18 specifically tissue hemoglobin content, oxygenation level, and water as well as

scattering particle size and number density.19 The inverse problem (image reconstruction

procedure) in NIR imaging is known to be a non-linear, ill-posed and ill-conditioned

problem.20 Use of structural information in NIR reconstruction schemes has been explored

by several research groups. For example, Li et. al7 have used the data derived from X-ray

mammography for choosing different regularization parameters for the region of interest

(ROI) and surrounding tissue, and have shown that the contrast and resolution of the

reconstructed images can be improved. Srinivasan et al.21 have developed a three-step

reconstruction process for improving the quantification accuracy of small-objects in NIR

tomography, where they use the conventional NIR reconstructed images (first step) as a

structural prior for the last two steps. Earlier papers have shown that optical contrast

can be correlated to MR contrast6,9,13 and that structural MRI images can be used to

reduce the number of unknown parameters to be estimated.14 The difficulty with parameter

reduction approaches (referred to as hard-priors) is the potential of introducing error by
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imposing incorrect model assumptions and introducing variation due to uncertainty in

the prior information (even when the underlying model is appropriate). For example, the

features which lead to contrast in one imaging system may not be spatially coregistered

with those that produce contrast in another imaging system. Further, segmentation of

congruent features always includes classification errors resulting from digitization. Recently,

Boverman et. al10 have shown that even imperfect priors which encode breast background

structure improves anomaly localization, but at the expense of biasing the spectroscopic

dimension of the image reconstruction. Another type of approach, often described as

soft-priors, for constraining the problem, penalizes the variation within regions which are

assumed to have the same properties by controlling regularization. Brooksby et. al15,16,22

have developed a Laplacian type of regularization that allows intra-region variability. This

is a method which works well even if the confidence in the prior structural information is low.

This paper develops a more generalized framework for incorporating the structural priors

into the NIR image reconstruction process and explores a covariance-based constraint scheme

adopted from finite differencing of the Helmholtz equation in addition to the soft and hard

prior approaches noted above. The former allows optical property variation with a given

region, reducing biases caused by the use of imperfect prior information. The results indicate

that imperfect structural information can generate errors in the hard-priors case, whereas

the soft-priors are able to quantify regions more appropriately. Simulation and experimental

studies are performed to demonstrate the superior reconstruction image quality. These types

of procedures are needed to improve NIR imaging both in terms of high spatial resolution

available from MRI and high contrast inherent in the NIR signal.

2. Methods

2.A. Diffusion-based Light Transport Model

Light transport in breast tissue can be described accurately by the Diffusion Equation (DE),

which is an approximation to the Radiative Transport Equation (RTE).23 In the frequency-

domain, the DE is given by

−∇.k(r)∇Φ(r, ω) + (µa(r) + iω/c)Φ(r, ω) = Qo(r, ω) (1)

where Φ(r, ω) is the photon density at position r and light modulation frequency is given by

ω (in this work, ω = 100 MHz). The isotropic source term is represented by Qo(r, ω) and

speed of light in tissue by c. µa(r) is the optical absorption coefficient and k(r) is the optical
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diffusion coefficient, which is defined as

k(r) =
1

3[µa(r) + µ′s(r)]
(2)

where µ′s(r) is the reduced scattering coefficient, which is defined as µ
′
s = µs(1 − g). µs is

the scattering coefficient and g is the anisotropy factor. A Robin-type (Type-III) boundary

condition is applied to exactly model the refractive-index mismatch at the boundary.24 The

boundary data for a frequency domain system are the amplitude and phase of the measured

signal, which is used with a Finite Element Method (FEM) based reconstruction procedure

to obtain the internal spatial distributions of µa and µ
′
s.

2.B. Standard image reconstruction

The objective function (Ω) for this procedure can be written as

Ω =
min

µa, k
{‖y − F(µa,k)‖2 + λ‖(µa,k)− (µa0,k0)‖2} (3)

Where, ’F’ is the forward operator that generates the model response and ’y’ is the exper-

imental measured data. ‖.‖2 represents L2-Norm of the vector. This is also known as the

Tikhonov approach,26 where ’λ’ is the regularization parameter that balances the degree to

which differences between the current estimate of optical properties and the starting values

are allowed and data-model misfit. More specifically, it is the ratio of the variances of the

data noise and the parameter (λ = σ2
y/σ

2
(µa,k)

). Minimizing Eq. 3 (by setting first derivatives

with respect to µa and k to zero) leads to an update equation

(JTJ + λI)(δµa, δk) = JT (y − F(µa,k))− λ[(µa,k)− (µa0,k0)] (4)

where, ’J’ is the Jacobian matrix and I is the identity matrix. Note that JTJ is ill-conditioned;

however I stabilizes the matrix. However, a slight deviation from this update equation is

generally employed, which is also known as Levenberg-Marquardt (LM) type of regularization

procedure,27,28 assuming [(δµa, δk) = (µa,k)− (µa0,k0)] leading to
29

(JTJ + 2λI)(δµa, δk) = JT (y − F(µa,k)) (5)

Most of the literature reports λ∗ ≡ 2λ,20,29 which is true only for Levenberg-Marquardt

minimization, which does not involve the parameter field in the objective function (Eq.

3) .27,28 In this LM approach, λ∗ typically starts being the ratio of the variances and is

reduced at each of the iterations by a small factor (in here, it is
√
10 and also multiplied

by the maximum of the diagonal values of JTJ). The iterative procedure is repeated until
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experimental data matches with modeled data within a preset value ε (≈ data noise level).
In general, the initial values, (µa0,k0), are obtained from a pre-reconstruction step where

the data is calibrated by a homogeneous fitting procedure.30,31

2.C. Inclusion of a priori information

The objective function with inclusion of prior information is given as15

Ω =
min

µa, k
{‖y − F(µa,k)‖2 + λ‖L[(µa,k)− (µa0,k0)]‖2} (6)

Here also λ is the ratio of the variance of the data noise to parameter field and L is a penalty

matrix (dimensionless in all the cases considered in this work) which can be derived from

MRI structural priors as indicated below. The update equation resulting from this procedure

is:

(JTJ + λLTL)(δµa, δk) = JT (y − F(µa,k))− λLTL[(µa,k)− (µa0,k0)] (7)

In this work, each location in the computational discretized model is labeled according to

tissue type (fatty, fibroglandular or tumor) determined from MRI T1-weighted images.15,16,22

It is also assumed that there is no covariance between the different regions of the imaging

domain. Since the domain model does not itself change throughout the iterative reconstruc-

tion algorithm, the L-matrix is calculated before the reconstruction procedure and it is used

through out the process to penalize the solution. Two forms for the L-matrix considered

in this work are discussed in the subsections below, including the Laplacian and Helmholtz

structures.

2.C.1. a Laplacian Structured Regularization Matrix

The Laplace equation in parameter u(r) can be written as

∇2u(r) = 0 (8)

A finite difference approximation to this equation for ’N’ number of equi-space (step size =

h) nodes can be written as32

∇2u(r)h2 ≈ u1 + u2 + . . .−NuN/2 + . . .+ uN−1 + uN = 0 (9)

Dividing the whole equation ’-N’ leads to

∇2u(r) ≈ −u1

N
+
−u2

N
+ . . .+ uN/2 + . . .+

−uN−1

N
+
−uN
N

= 0 (10)

6



The L matrix is a matrix that relates each nodal property of the numerical model to all other

nodes. Therefore given a node i within the mesh, its relationship to another node j having

Laplacian structure (Eq. 10) within the same mesh can be given as15,16

L(i, j) =















0 if i and j are not in the same region

−1/N if i and j are in the same region

1 if i = j

(11)

where N is the number of finite element mesh nodes comprising a given region. In this

case, LTL approximates a second-order Laplacian smoothing operator within each region,

and functionally works to average the update within a region, while allowing discontinuity

between different regions.

2.C.2. a Helmholtz Structured Regularization Matrix

The Helmholtz equation in parameter u(r) for a damped wave can be written as

∇2u(r)− κ2u(r) = 0 (12)

where κ is the wave number, specifically κ = 1/l, where l covariance length.32 l also represents

the decay length scale over which the parameter u(r) has correlation. Making κ = 0, will

give the Laplace equation (Eq. 8). A finite difference approximation to this equation for ’N’

number of equi-space (step size = h) nodes can be written as32

(

∇2 − κ2
)

u(r)h2 ≈ u1 + u2 + . . .+ [−(N + (κh)2)]uN/2 + . . .+ uN−1 + uN = 0 (13)

Dividing the whole equation by ’−(N + (κh)2)’ gives
(

∇2 − κ2
)

u(r) ≈
−u1

− (N + (κh)2)
+

−u2

− (N + (κh)2)
+ . . .+ uN/2 + . . .+

−uN−1

− (N + (κh)2)
+

−uN

− (N + (κh)2)
= 0 (14)

Writing this as a generalized L-matrix form similar to Eq. 11

L(i, j) =



















0 if i and j are not in the same region

− 1
N+(κh)2

if i and j are in the same region

1 if i = j

(15)

For the FEM nodes case, h is chosen to be the distance between the nodes. More over,

κ = 1/l is generally chosen to be the inverse of the size of the feature (tumor in this case)

in the imaging domain. This case is also known as Best Prior Estimate (BPE). As the prior

structural information is available through MRI, l is chosen to be the diameter of the target

(tumor) in the BPE case. In this case, LTL (L given by Eq. 15) approximates a second-order
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Helmholtz smoothing operator. To determine the effect of κ on the parameter reconstruction,

different values for κ are chosen. It is shown that for small values of κ, which corresponds

to a large correlation length (l), both Laplacian and Helmholtz structures recover the same

optical property distribution.

2.D. Breast geometry - Effect of imperfect a priori information

The techniques described in Sec. 2 were used to reconstruct images from synthetic data

with 1% random noise added. Numerical experiments using synthetic data generated on a

volunteer MRI T1-weighted breast images with incorrect priors to show the effectiveness of

soft-priors. Figure 1(a) (first column) shows the original distribution of three tissue layers,

namely fatty (µa = 0.006 mm
−1 and µ′s = 0.6 mm

−1), fibro glandular (µa = 0.012 mm
−1 and

µ′s = 1.2 mm
−1) and tumor (µa = 0.018 mm

−1 and µ′s = 1.8 mm
−1) for the breast geometry

(labeled as 0, 1 and 2 respectively, in Fig. 1(a) first column). Sixteen light collection/delivery

fibers were arranged equally spaced on a circle (indentions in Fig. 1(a)). In succession, one

fiber was used as the source while all other fibers served as detectors which provided a

total of 240 measurements. In these studies, the source was modeled as a Gaussian profile

with a Full Width Half Maximum (FWHM) of 3 mm to most accurately represent the

light applied using the clinical system used, and was placed at a depth of one transport

scattering distance from the tissue boundary. A mesh of 1785 nodes (corresponding to 3418

linear triangular elements) was used for the diffusion model and reconstruction calcula-

tions.33 A total of 7% of the glandular layer (label-1) FEM nodes were labeled (relative

to the original glandular layer nodes) as fat (label-0) to introduce imperfect structural priors.

The same initial estimates (optical properties of region ’0’) were used as homogeneous

starting conditions. The iterative procedure was stopped once the data-model misfit (resid-

ual) did not improve by more than 2% when compared with the previous iteration. The

starting value for λ is chosen to be 25000 and 75 for µa and k respectively, derived from the

noise characteristics, for Eq. 5. The same values are chosen for Eq. 7.

2.E. Breast geometry - Effect of data noise level

The techniques described in Sec. 2 were used to reconstruct images from synthetic data with

1, 3, 5 and 10% Gaussian noise to see the effect of data noise level on the reconstruction

techniques. The breast geometry (and the optical properties) were equivalent to the previ-

ous section (Fig. 1(a)), however, perfect spatial priors were used. The same FEM mesh as

described above was employed in the forward and reconstruction problems. Optical proper-

ties of region ’0’ were used as initial guess for the iterative procedure. The regularization
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parameter (λ) and stopping criterion was chosen according to each data noise level.

2.F. Phantom studies

A multi-layered gelatin phantom (86 mm diameter, 25 mm height) was fabricated with

different optical properties using heated mixtures of water (80%), gelatin (20%) (G2625,

Sigma Inc.), India Ink for absorption and TiO2 (titanium oxide powder, Sigma Inc.) for

scattering15 were solidified by cooling to room temperature (see Fig. 3). Different layers

of gelatin were constructed by successively hardening gel solutions containing different

amounts of ink and TiO2. A cylindrical hole (diameter of 16 mm and height of 24 mm)

was filled with liquid to mimic the tumor. The first column in Fig. 4 shows the axial

cross-section of three-layers of the phantom (Fig. 3) where the region labeled ’0’ has the

homogeneous optical properties (µa = 0.0065 mm−1 and µ′s = 0. 65 mm−1), similar to

the typical fatty layer in the breast6 and a thickness of 10 mm. The fibroglandular layer

(diameter 76mm) also has homogeneous optical properties (region labeled ’1’) of µa = 0.01

mm−1 and µ′s = 1.0 mm
−1. The tumor (represented by the region labeled ’2’) has a diameter

of 16 mm with optical properties of µa = 0.02 mm
−1 and µ′s = 1.2 mm

−1. The optical

properties were validated by measuring large cylindrical samples of each layer. Appropriate

mixtures of Intralipid and India ink were used to achieve the desired optical parameters of

the tumor. Data was acquired using a clinical NIR system34 where the fibers were marked

and photographed to extract region information (analogous to MRI images). This regional

information was used to label the corresponding regions in the FEM mesh.15 A mesh of 1785

nodes (corresponding to 3418 linear triangular elements) was used for the diffusion model

calculations and a mesh having 1360 nodes was used in the reconstruction.33 NIR data

was calibrated using a reference homogenous phantom to obtain initial optical properties

estimates and minimize the variation between the 16 optical channels according to standard

practice in human imaging studies.30,31

3. Results

Reconstructed µa and µ′s images obtained from the noisy simulated data with imperfect

(7% error) glandular layer priors using the methods described in Sec. 2 are shown in Fig. 1.

Using hard priors, the total number of unknowns is reduced to 6 parameters (µa and µ
′
s for

each of the 3 regions) and these images are presented in the last column of Fig. 1(a). The

images from two different approaches of soft-priors are shown in the middle 2 columns; the

first column shows the expected results. For the Helmholtz case, κ = 1/8 mm (BPE) was

9



used, where 8 mm is the diameter of the tumor. Cross-sectional plots of the reconstructed

µa and µ′s distributions along the dotted line in Fig. 1(a) (first column) are provided in

Fig. 1(b). Table 1(a) and (b) show the mean and standard deviation of the optical property

estimations in each region of the reconstructed images. Note that the NIR reconstruction

procedure without prior information (not shown) did not generate meaningful images in

this complex case.

Figure 2(a) shows the reconstructed images from the data with 5% noise using all four

techniques described in Sec. 2. The first column of Fig. 1(a) shows the actual distribution

of optical properties. Figure 2(b) shows the mean and standard deviation values (as error

bars) of reconstructed images using different techniques for different regions of the breast

geometry with increasing data noise level. In the Helmholtz case, κ = 1/8 mm (BPE)

was used. The actual values are also plotted for the comparison. It can be clearly seen

Laplacian regularization gives lesser standard deviation for the absorption coefficient

(µa) reconstruction compared to the Helmholtz structure. On the other hand, Helmholtz

structure performs better than Laplacian in the case of scattering coefficient (µ′s).

A photograph of the phantom used to collect data at 785nm with 16 fibers in a single plane

(giving 240 measurements) is shown in Fig. 3. Images obtained from the procedures described

in Sec. 2 are presented in Fig. 4(a) along with cross-sectional plots of the reconstructed µa

and µ′s distributions in Fig. 4(b). Table 2(a) and (b) show the mean and standard deviation

of the optical property estimations in each region of the reconstructed images. Here also, for

Helmholtz case, the BPE (κ = 1/16 mm) was used. Figure 5(a) gives the results for different

values of κ (given on the top of the each column, true distribution is shown as first column in

Fig. 4(a)) in the Helmholtz case. Corresponding cross-sections are plotted in Fig. 5(b). The

mean and standard deviation values for each of this case are also given in Table 2(a) and (b).

4. Discussion

The reconstructed results (Fig. 1, 2, 4 and 5) show that the structural priors improve the

reconstructed image quality dramatically. The penalized problem formulation (different

type of regularizations) generates smoother images resulting in smaller standard deviations

from the mean values (see Table-2) as compared to the generalized problem that does not

incorporate prior information.

10



The hard-prior case produces significant optical property value error when the structural

a priori information is imperfect in the breast geometry (Fig. 1 and Table-1). In this case,

a 7% variation in the definition of the glandular layer caused false estimates of the optical

properties. On the other hand, soft-priors (Laplacian and Helmholtz) yield good estimates

for each layer. Hard-priors over-estimate the tumor absorption coefficient by 360% and

under-estimate its scattering coefficient by 88% (Fig. 1). Soft-priors are within the 6% of

the expected values even with the error in the structural prior. Note that in this particular

case, hard-priors failed when 7% of glandular layer made as a fatty layer, yet below this

error value it gave reasonable estimates of optical properties.

With perfect structural priors, increasing the data noise level also increases the quan-

tification error in the reconstructed images (Fig. 2(a) and(b)). Hard–Priors clearly fail

in quantifying the tumor optical properties as the data noise level increases. Soft–Priors

does better in the quantification than Hard–Priors. It is also evident that incorporation

of structural information is key for accurate quantification of the optical properties. The

experimental results (Fig. 4) from the three-layer gelatin phantom (Fig. 3) also show that

incorporation of perfect structural information improves the quantification and quality of

the reconstructed images. Specifically, the mean and standard deviation of the reconstructed

optical property values in each region are both more accurate and more precise where the

priors are included. The mean values (Table-2) show that the absorption coefficient for the

Region-0 (fat) is under-estimated by 77% in the case of the Helmholtz regularization (BPE).

This error can be explained by the fact that the Euclidean distance between the nodes

was used rather than the distance between the nodes along the boundary of a particular

region. Both Laplacian and Hard-Priors over estimate the scattering coefficient of the

tumor region by a factor of 2. It is known that the photon path length is affected by the

scattering coefficient. By constraining the problem based on the distance, one can expect to

estimate the scattering better. More over, the Helmholtz equation allows wave propagation,

which models the photon diffusion better. Table-2 indicates that the Helmholtz technique

always produces more quantitative accuracy for the scattering coefficient estimation and the

Laplacian technique is best for the absorption coefficient estimation (as well as Fig. 2 and 4).

Theoretically Helmholtz and Laplacian structures are identical when κ = 0 (equivalently l

is large). Figures 5(a) and (b) (as well as Table-2) show that when κ = 1/86 mm (l = 86 mm

is the diameter of the domain), Laplacian and Helmholtz structures give reasonably close

reconstruction values of optical properties, which indicates the expected trend presented in
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this paper for the two methods. It also indicates that the BPE case (κ = 1/16 mm) gives

the best results, as the priors applied are close to the true structure of the feature (tumor).

These results also indicate that unreasonable constraints (like κ = 1/5 mm, Fig. 5(a) first

column) makes the estimation problem amplify the noise resulting in physiologically invalid

(scattering coefficient is greater for fatty layer compared to fibroglandular layer) estimates

of optical properties. In the tumor region, as κ decreases, the estimated values of optical

parameters become closer to expected values (Table-2 and Fig. 5, κ = 1/43 and κ = 1/86

cases). This is due to the correlation length becoming larger, making the covariance in the

neighboring nodes larger.

In this study, it is shown that imperfect priors (commonly caused by improper image

segmentation and image artifacts in MRI or X-ray) can lead to error-prone results in the

hard-prior case whereas soft-priors are more immune to uncertainty in the prior data. It is

also shown that the techniques used to incorporate the soft structural prior information in-

fluences the image outcome, which may lead to improvements in image accuracy if properly

implemented. Srinivasan et. al35 have found that 5% error in optical properties introduces

approximately 45% error in the chromophore concentration when a limited number of wave-

lengths are used for imaging. The correct ”soft” inclusion of a priori information therefore

can be expected to lead to a more accurate quantification of chromophore concentrations as

well. It should be noted that over-weighting of the penalty term in the problem formulation

may make the solution ignore the data-model misfit and emphasize smooth feature extrac-

tion. The techniques developed in this work were applied for two-dimensional test objects,

and can be easily extended to three-dimensional case. A more extensive study of this is left

for future investigations.

5. Conclusions

This work has investigated several ways of incorporating structural information into an itera-

tive image reconstruction. The results have been supported by gelatin phantom experiments

that represent multi-layered structure which is commonly found in breast tissue with adipose

(fatty) tissue on the exterior and fibroglandular tissue nearer to the interior. Soft-priors

allow the tissue optical properties to vary within predefined regions, unlike hard-priors which

constrain these zones to be homogeneous. Hard-priors were found to perform poorly when

the prior information contained area errors as small as 7% which can easily be produced

by most segmentation algorithms. True boundary extraction from MRI images intro-

duces unavoidable segmentation and discretization errors that are better tolerated when the
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structural information is encoded through the soft-prior approach involving a penalty matrix.

The results reported here indicate that the optical properties of different tissue types can

be quantified more accurately when their estimation is properly guided by ”soft” structural a

priori information. The problem formulation and results presented in this work indicate that

data from other imaging modalities such as ultrasound or x-ray tomography, could also be

used as the source of the structural prior. In the cases investigated, the Helmholtz structure

always gives a better estimation of scattering coefficient. However, the Laplacian type of

regularization leads to more superior absorption coefficient estimate. So it is reasonable to

conclude that Laplacian structure gives the best estimates of total hemoglobin concentration

(HbT ), hemoglobin oxygen saturation (StO2%) and water fraction (H2O) (which are the

main absorbers). Helmholtz structure gives the best estimates of the scattering power and

scattering amplitude (scattering parameters). The framework presented here can also be

extended to other regularization terms such as total variation minimization or spectral prior

constraints, which may be studied in future work.
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List of Tables

Table 1: Mean and standard deviation of the reconstructed (a). µa and (b). µ
′
s values in

different regions (labeled in first column of Fig. 1(a)) recovered with simulated data having

1% random noise and imperfect structural information defining region ’1’ (7% reduction

compared to the original segmentation). The corresponding reconstructed images are shown

in Fig. 1(a)

Table 2: Mean and standard deviation of the reconstructed (a). µa and (b). µ
′
s values

in different regions (labeled in first column of Fig. 4(a)) recovered from the experimental

phantom data. The corresponding reconstructed images are shown in Fig. 4(a) and 5(a).

List of Figures

Figure 1: (a). Actual µa and µ′s distributions from a breast (obtained from a volun-

teer) are shown in the first column. Optical properties for the region labeled ’0’ (fat) are:

µa = 0.006 mm
−1 and µs = 0.6 mm

−1. Region ’1’ (fibroglandular) values are: µa = 0.012

mm−1 and µ′s = 1.2 mm
−1. Region ’2’ (tumor) values are: µa = 0.018 mm

−1 and µ′s =

1.8 mm−1. Reconstructed µa and µ′s images from different techniques with simulated data

having 1% random noise and imperfect structural information defining region ’1’ (7%

reduction compared to the original segmentation) are shown in the rest of the columns.

The middle two columns use soft prior structural information while the last row shows the

result with hard prior information. In the Helmholtz case, κ = 1/8 mm (BPE) was used.

(b). Cross-sectional plots along the dotted line in the actual image (see first column of (a))

of the true and reconstructed µa and µ
′
s distributions.

Figure 2: (a). Reconstructed µa and µ′s images from different techniques with simu-

lated data having 5% random noise and perfect structural priors (actual images are shown

in the first column of Fig. 1(a)). The first column shows the reconstruction results without

the use of prior information. The middle two columns use soft prior structural information

while the last row shows the result with hard prior information. In the Helmholtz case, κ =

1/8 mm (BPE) was used. (b). The mean values and standard deviations (plotted as error

bars) in µa and µ′s for different regions of breast geometry (labeled in actual image) with

increasing noise level (1% to 10 %).
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Figure 3: Photograph for gelatin phantom (representing the idealized two-dimensional

cross-sectional geometry shown as first column in Fig. 4(a)) used in the experimental studies.

Figure 4: (a). Actual µa and µ′s distributions (axial cross-section) of phantom (Fig.

3) case are shown in the first column. Optical properties for the region labeled ’0’ are: µa =

0.0065 mm−1 and µ′s = 0. 65 mm
−1. Region ’1’ values are: µa = 0.01 mm

−1 and µ′s = 1.0

mm−1. Region ’2’ (tumor) values are: µa = 0.02 mm
−1 and µ′s = 1.2 mm

−1. Reconstructed

µa and µ
′
s distribution from different techniques (discussed in Sec. 2) from the experimental

phantom data. Second column of images does not use prior information. The middle rows

use soft prior structural information and the last row of images were recovered with hard

priors. In the Helmholtz case, κ = 1/16 mm (BPE) was used. (b). Cross-sectional plots along

the dotted line in the actual image (see first column of (a)) of the true and reconstructed

µa and µ
′
s distributions.

Figure 5: (a). Reconstructed µa and µ′s images from the experimental phantom data

using Helmholtz-type regularization matrix for different values of κ, which are given at the

top of each column. (b). Cross-sectional plots along the dotted line of the actual images in

Fig. 4(a) (first column) are shown with the data from reconstructed µa and µ′s images in

(a). The best prior estimate (BPE) case (κ = 1/16 mm) is also presented for comparison.
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Tables

Methods Region-0 Region-1 Region-2

Actual 0.006 0.012 0.018

Laplacian 0.0064±0.0010 0.0117±0.0018 0.0156±0.0018
Helmholtz (κ = 1/8) 0.0062±0.0011 0.012±0.002 0.0156±0.0017

Hard Priors 0.006 0.0118 0.0843

(a)

Methods Region-0 Region-1 Region-2

Actual 0.6 1.0 1.8

Laplacian 0.63±0.10 1.13±0.18 1.67±0.23
Helmholtz (κ = 1/8) 0.64±0.09 1.09±0.16 1.64±0.22

Hard Priors 0.64 1.13 0.23

(b)

Table 1
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Methods Region-0 Region-1 Region-2

Actual 0.0065 0.01 0.02

No Priors 0.0022±0.0005 0.0061±0.0032 0.0192±0.0044
Laplacian 0.0031±0.0002 0.0051±0.0005 0.0174±0.0029

Helmholtz (κ = 1/16) 0.0015±0.0005 0.0058±0.0009 0.0241±0.0043
Hard Priors 0.0032 0.005 0.0213

Helmholtz (κ = 1/5) 0.0009±0.0006 0.0061±0.0008 0.0191±0.0031
Helmholtz (κ = 1/43) 0.0027±0.0003 0.0052±0.0007 0.0234±0.0043
Helmholtz (κ = 1/86) 0.0022±0.0005 0.0061±0.0032 0.0192±0.0044

(a)

Methods Region-0 Region-1 Region-2

Actual 0.65 1.0 1.2

No Priors 0.64±0.40 0.66±0.27 0.76±0.16
Laplacian 0.38±0.03 0.63±0.07 2.37±0.41

Helmholtz (κ = 1/16) 0.46±0.02 0.59±0.02 1.08±0.12
Hard Priors 0.37 0.63 2.74

Helmholtz (κ = 1/5) 0.60±0.01 0.57±0.01 0.82±0.06
Helmholtz (κ = 1/43) 0.39±0.03 0.63±0.03 1.19±0.13
Helmholtz (κ = 1/86) 0.39±0.03 0.63±0.04 1.21±0.14

(b)

Table 2
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ABSTRACT

Diffuse Optical Tomography (DOT) involves estimation of tissue optical prop-

erties using noninvasive boundary measurements. The image reconstruction

procedure is a non-linear, ill-posed, and ill-determined problem, so overcoming

these difficulties requires regularization of the solution. While the methods

developed for solving the DOT image reconstruction procedure have a long

history, there is less direct evidence on the optimal regularization methods,

or exploring a common theoretical framework for techniques which uses

least-squares (LS) minimization. A generalized least-squares (GLS) method

is discussed here, which takes into account the variances and covariances

among the individual data points and optical properties in the image into

a structured weight-matrix. It is shown that most of the least-squares

techniques applied in DOT can be considered as special cases of this more

generalized LS approach. The performance of three minimization techniques

using the same implementation scheme is compared using test-problems with

increasing noise level, and increasing complexity within the imaging field.

Techniques that use spatial-prior information as constraints can be also

incorporated into the GLS formalism. It is also illustrated that inclusion

of spatial priors reduces the image error by at least a factor of 2. The

improvement of GLS minimization is even more apparent when the noise level

in the data is high (as high as 10%), indicating that the benefits of this ap-

proach are important for reconstruction of data in a routine setting where the

data variance can be known based upon the signal to noise of the instruments.
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1. Introduction

Image reconstruction methods used in diffuse optical tomography (DOT) are mainly

dependent on the type of data, diffuse light model and amount anatomical/spectral

priors available. There are numerous reconstruction techniques available in the literature

depending on the application.1−5 Yet despite the volume of work in this area there is no

single investigation with a direct comparison of the LS minimization techniques using the

same implementation scheme, especially in terms data noise level and complexity in the

test fields. Most of the comparisons in the literature have been in terms of implementation

of minimization and convergence rates of one or two techniques at hand.1−5 This work

addresses this problem and compares minimization methods (more specifically different

types of regularization) with the same implementation scheme for a direct quantitative

comparison. Moreover, usage of weight matrices in the regularization which include the

variance and covariance properties of data and image space is extensively explored here. A

new covariance form borrowed from meteorological studies is introduced and proven to be

effective for reconstructing highly noisy data in the generalized theoretical frame work.

Near Infrared (NIR) DOT involves reconstructing images of optical properties from

transmission measurements using wavelengths from 650nm to 1000nm to interrogate

tissue.1,6−8 Optical absorption and scattering images obtained using multiple wavelengths

can be used to estimate tissue hemoglobin, water concentration and scattering amplitude

and scattering power.8 To overcome the inherent low-spatial resolution in DOT, there is

a considerable interest in developing hybrid systems,9−27 which use the spatial mapping

of one system as the template for DOT. Image formation from the data collected by

these (stand-alone/hybrid) systems involves solving an inversion problem. This paper

describes least-squares (LS) minimization techniques to solve the inverse problem, and to

quantitatively compare their performance in a systematic series of simulations. The inverse

problem (image reconstruction procedure) in DOT is known to be a non-linear, ill-posed,

and ill-determined problem,2 and to solve such a problem, a regularization term must be

added to constrain the solution space in order to obtain a meaningful image. There are

many regularization methods available in the literature, and this work focuses on the fact

that most LS techniques presented in the literature can be encompassed within a generalized

theoretical framework, which includes a regularization matrix that is based upon weights

from the data and parameter variances. Note that appendix-A.1 gives the terminology used

in this work along with definitions of symbols.
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Because of the interest in using spatial information derived from conventional imaging

modalities in the DOT inverse problem, a number of methods have been presented in the

literature.9−27 These techniques were initially proposed by Barbour et al9and Schweiger et

al13 and used in to improve the quantitative outcome of reconstructed images. Ntziachristos

et al14 used the MR information to divide the imaging domain into tumor and non-tumor

regions to make the problem better posed. Li et al17 used an X-ray tomosynthesis volume to

segment the breast into different sub-regions and used different regularization parameters

depending on the size of the sub-regions. Recently Guven et al24 proposed a Bayesian frame

work to include spatial prior information in an effective way which will not bias the image

reconstruction problem to imperfect anatomical priors. Pogue and Paulsen,10 Brooksby

et al,18,21,25 Yalavarthy et al26 have extended these approaches for the use of anatomical

prior information in which, depending on the connectivity and size of the sub-region, the

regularization term was scaled. Even though the effect of imperfect spatial prior information

on the image reconstruction is a very active research area,23,24,26 it was assumed here that

the spatial priors were perfect. Other ongoing studies are examining this more complex issue.

2. DOT Forward Problem

DOT involves solving a model (forward) and estimation (inverse) problem, sequentially

as illustrated in Fig. 1. In this section, the forward problem is described, which involves

generating the measurement data, for a given set of optical property estimates within the

tissue, using a finite element solution to the diffuse transport equation.

Light propagation in a turbid elastic-scattering media, like tissue, is treated as ‘neutral-

particle transport’ rather than ‘wave-propagation’ and in the frequency-domain, the Diffusion

Equation (DE) is used, which is given by2,28

−∇.D(r)∇Φ(r, ω) + (µa(r) + iω/c)Φ(r, ω) = Qo(r, ω) (1)

where Φ(r, ω) is the photon density at position r and the light modulation frequency is given

by ω (ω = 2πf, in this work f = 100 MHz). The isotropic source term is represented by

Qo(r, ω) and the speed of light in tissue by c, which is constant here. µa(r) is the optical

absorption coefficient and D(r) is the optical diffusion coefficient, which is defined as

D(r) =
1

3[µa(r) + µ′s(r)]
(2)

where µ′s(r) is the reduced scattering coefficient, which is defined as µ
′
s = µs(1− g). µs is the

scattering coefficient and g is the anisotropy factor. A Robin (Type-III) boundary condition
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is applied to model the refractive-index mismatch at the boundary.29 The measured data

for a frequency domain system are the amplitude and phase of the transmitted signal. If

F is the forward model (Finite Element Method (FEM) in here) which gives the fluence at

every point, then the modeled data G(µ) can be obtained by sampling the forward model at

the boundary given internal spatial distributions of optical properties and source-detector

locations, where µ represents the parameters to be estimated (µ= [D(r);µa(r)]).

G(µ) = S{F (µ)} (3)

The details of the FEM formulation of the forward model are given in Refs.30–32 The

results presented are restricted to frequency-domain data, more specifically data (y) is

the natural logarithm of the amplitude (A) and phase (θ) of the frequency-domain sig-

nal. Defining A and θ in terms of modeled data, A =
√

Re{G(µ)}2 + Im{G(µ)}2 and

θ = tan−1 (Im{G(µ)}/Re{G(µ)}). The Jacobian (J), which gives the rate of change of

modeled data with respect to parameters, is calculated using the adjoint method.30 Even

though the actual parameters being estimated are D(r) and µa(r), the results are presented

in terms of µa(r) and µ
′
s(r), which are spectroscopically more meaningful.

3. Least-Squares Minimization Techniques

This section outlines several different minimization schemes used in this work. These

techniques are used to solve the inverse problem (Fig. 1), which is achieved by minimizing

the objective function (Ω) over the range of µ. Minimizing the objective function can be

achieved by several different approaches. The most common approaches involve obtaining

repeated solutions of the forward model and recomputation of the Jacobian (J) (and its

inversion) at every iteration because of the non-linear nature of the problem. There are

also gradient-based optimization schemes available in the literature33,34 to minimize the

objective function which does not require an explicit inversion of the Hessian matrix. In

here direct methods, known as full-Newton approaches,2 are employed in minimization for

all the regularization techniques used for a fair comparison. LS minimization has the effect

of reducing high frequency noise, leading to smooth images of optical properties. Total

variation methods and variants of this are used to obtain edge preservation in reconstructed

images.27,35 Solving the inverse problem using LS minimization can be also seen from

Bayesian prospective to get maximum a posteriori (MAP) estimate.24,36,37 A correlation

between the Bayesian frame work and LS minimization techniques is given in Refs.,12,38,39

but usage of Bayesian frame work requires one to choose a particular noise model for

both data and image space, which might not reflect the actual noise characteristics unless

some prior information is available. Here, the focus is on Least-Squares (LS) minimization
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techniques with a focus on what the value of the regularization method can be. The LS

methods are divided into two groups; (1). Without spatial priors (2). With spatial priors.

Without Spatial Priors

3.A. Levenberg-Marquardt (LM) Minimization

This approach is also known as a trust-region method5,39 where experimental data is matched

with modeled data iteratively.40,41 The objective function for the DOT problem is defined as

Ω = {‖y −G(µ)‖2} (4)

where y is the data and G(µ) is the modeled data. This equation is minimized by setting

the first-order derivative equal to zero.

First-Order Condition: Minimizing Ω with respect to µ, which is achieved by setting
∂Ω
∂µ
= 0

∂Ω

∂µ
= JT δ = 0 (5)

where δ is the data-model misfit, δ = y −G(µ), J is the Jacobian, T represents the matrix

transpose operator.

Iterative Update Equation: Imagine a sequence of approximations to µ represented by

µi, then using Taylor series on G(µi) and expanding around µi−1 gives

G(µi) = G(µi−1) + J4µi + . . . (6)

where 4µi = µi − µi−1. Rewriting δ utilizing the first two terms of Eq. 6 (ignoring the rest,

equivalently linearizing the problem) gives

δi = y −G(µi) = y −G(µi−1)− J4µi = δi−1 − J4µi (7)

Rewriting Eq. 5 for the ith iteration

JT δi = 0 (8)

Substituting Eq. 7 into Eq. 8 gives

JT (δi−1 − J4µi) = 0 (9)

Further simplification leads to the update equation:

[

JTJ
]

4µi = J
Tδi−1 (10)
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When JTJ is ill-conditioned, a diagonal term is added to stabilize the problem. In this case,

the update equation becomes:
[

JTJ+ αI
]

4µi = J
Tδi−1 (11)

Where 4µi is the update for the parameter in the ith step. Note that α monotonically

decreases with iterations (always > 0), and also that α ≥ ‖δ‖2. The iterative method (or its

modified version) is the commonly used minimization technique in DOT. It can be seen from

Eq. 10 and 11, when α becomes zero in Eq. 11 it becomes Eq. 10. It is also important to note

that JTJ is always symmetric, because (JTJ)T = JT (JT )T = JTJ . The advantage of using

this method is in the simple choice of a regularization parameter (α). The limitations 41 of

this method include:

• JTJ must be positive definite.

• The initial guess (µ0) should be close to the actual solution.

• The update equation (Eq. 11) does not solve the first-order conditions unless α = 0.

• Since parameters are not involved in the minimization scheme, the inverse problem

may be unstable.

Even though JTJ is not positive definite in DOT, the LM approach (or its modified version)

has been used successfully in a number of instances.2,6, 7, 28,42

3.B. Tikhonov Minimization

The generalized objective function43,44 in the Tikhonov case includes parameters in the

minimization function, which is defined as:

Ω = {‖y −G(µ)‖2 + λ‖L(µ− µ0)‖
2} (12)

where λ is the Tikhonov regularization parameter and L is a dimensionless regularization

matrix (in this work). Here, µ0 is the prior estimate of the optical properties, which in DOT

has typically been obtained from calibrating the data.45,46

Choice of λ: Rewriting Eq. 12, normalizing both terms by their variances yields

Ω = {
‖y −G(µ)‖2

(σy)2
+
‖L(µ− µ0)‖

2

(σµ−µ0
)2

} (13)

where σy is the standard deviation in the data y and σµ−µ0
is the standard deviation in

the optical properties (or deviation from the prior estimate of optical properties). Note that
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the variance of data-model misfit (δ = y − G(µ)) is assumed from the data, i.e. (σδ)
2 =

(σy)
2 + (σG(µ))

2 with (σG(µ))
2 = 0 because synthetic data was used. Multiplying Eq. 13 by

σy
2 and comparing the result with Eq. 12 leads to:

λ =
(σy)

2

(σµ−µ0
)2

(14)

which shows that the Tikhonov regularization parameter (λ) should be equal to the square

of the ratio of the standard deviation in data to the standard deviation of the parameters.

This is a subtle yet important point, especially since this parameter is rarely defined this

way, and is most commonly derived empirically.

First-Order Condition: Minimizing Ω with respect to µ, which is achieved by setting
∂Ω
∂µ
= 0

∂Ω

∂µ
= JT δ − λLTL(µ− µ0) = 0. (15)

Update Equation: Rewriting Eq. 15 for the ith iteration leads to

JT δi − λLTL(µi − µ0) = 0 (16)

Substituting Eq. 7 into Eq. 16 results in

JT (δi−1 − J4µi)− λLTL(µi−1 +4µi − µ0) = 0. (17)

Further simplification leads to the iterative update equation:

[

JTJ+ λLTL
]

4µi = J
Tδi−1 − λLTL(µi−1 − µ0). (18)

Note that LTL is symmetric. The constraint on the choice of L is that it must be positive

definite.44 In the absence of spatial priors, a common choice for the form of L is the identity

matrix (I), which leads to the update equation

[

JTJ+ λI
]

4µi = J
Tδi−1 − λ(µi−1 − µ0) (19)

Refer to appendix-A.2 for an analysis of the Tikhonov regularization in terms of singular

values. This regularization method is particularly common for ill-posed problems. The ad-

vantage of the method, is that it includes parameters within the minimization scheme which

can be selected to improve the stability of the solution. Its limitations are that

• it requires a prior opinion about the noise characteristics of the parameter and data

spaces (for λ), and
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• it does not take into account the individual variances of the data points/parameters,

nor their covariances.

However, the simplicity of the approach makes it attractive for use in ill-posed problems.

When the dynamic range of the data is large (as in DOT), incorporation of the maximum

variance in the data will cause the minimization to bias the solution to specific data points

(e.g. near the boundaries at source-detector locations in DOT). To reduce the effect of bias,

one can employ a generalized least squares (GLS) minimization scheme, described in the

next section.

3.C. Generalized Least Squares (GLS) Minimization

Generalized least squares minimization schemes have been proposed in the context of

Tikhonov minimization in the literature,1,5, 38 in which there is some ambiguity in choos-

ing the regularization parameter (λ). In here, a direct inclusion of weight matrices (which

are inverses of covariance matrices) in the minimization scheme was employed to explic-

itly remove the dependence of reconstructed image quality on the choice of regularization

parameter. This type of choice leads to an objective function:47,48

Ω = {(y −G(µ))TWδ(y −G(µ)) + (µ− µ0)
TWµ−µ0

(µ− µ0)} (20)

where Wδ is the weight matrix for data-model misfit (δ) with Wδ = (cov(δ))
−1 (Appendix

A-4 of Ref.47). Wµ−µ0
is the weight matrix for optical properties (µ-µ0) with Wµ−µ0

=

(cov(µ − µ0))
−1 (Appendix A-4 of Ref.47). Explicit forms for these weight matrices are

discussed below. Since both are inverses of covariance matrices, they are symmetric and

positive definite.

First-Order Condition: Minimizing Ω with respect to µ, which is achieved by setting
∂Ω
∂µ
= 0 produces

∂Ω

∂µ
= JTWδδ −Wµ−µ0

(µ− µ0) = 0. (21)

Update Equation: Similar to Tikhonov approach, linearizing the problem leads to the iterative

update equation:48

[

JTWδJ+Wµ−µ0

]

4µi = J
TWδδi−1 −Wµ−µ0

(µi−1 − µ0) (22)
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3.C.1. Choice of Wδ

Since simulated data was used here, in the formation of the weight matrix (covariance ma-

trix), it was assumed that the cov(δ) is due to measurement error only, which yields47

Wδ = [cov(δ)]
−1 = [cov(y −G(µ))]−1 = [cov(y)]−1 (23)

where cov represents the covariance operator. In the simulation, typically one generates the

forward data and adds noise to it to form synthetic data.

y = G(µ) + σyη (24)

Where η is a random number vector. Typically, a random number generator which follows

a normal distribution with zero mean and unity variance is used. Here, σy is the standard

deviation of the data, assuming the noise is totally uncorrelated (white noise) in which case,

the covariance matrix becomes47

cov(y)i,j =







0 if i 6= j

(σy)i
2 if i = j

(25)

Since synthetic data was used in this paper, the weight matrix for the data (Wδ) becomes

diagonal. In the experimental case, one needs to collect an ensemble of data sets from which

a covariance matrix can be computed. In this case, ’N’ data sets needs to be collected using

the same phantom (different homogeneous phantoms need to be used for different signal

levels), where ’N’ needs to be a large number. From this ensemble of {y}

{y} = y + {ỹ} (26)

where y is the true or mean value of data and {ỹ} is perturbation due to noise. This leads

to

[cov(y)] = [cov(ỹ)] = {ỹ}{ỹ}T =

∑N
i=1 ỹiỹi

T

N
(27)

substituting 27 in Eq. 23 gives Wδ. Note that in Eq. 23, it was assumed the cov(δ) is due

to measurement error, which is also true in the case of experimental data, as the data is

calibrated to remove the offset and match the modeled data.45,46

3.C.2. Choices of Wµ−µ0

Here, two forms were considered to highlight the versatility of the procedure, even though

many other forms of the covariance matrix can exist.
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Analytical Covariance (AC) form: Borrowed from the meteorological studies, assuming

the parameter field obeys the Helmholtz equation, an analytical form (for one-dimensional

infinite domain case) for the covariance matrix is:47

[cov(µ− µ0)] = (σµ−µ0
)2
(

1 +
rij
l

)

e−
rij
l (28)

where rij is the separation distance between locations and l is the correlation length scale.

(σµ−µ0
)2 is the expected variance for µ − µ0. In this case, the weight matrix is constructed

from Wµ−µ0
= (cov(µ− µ0))

−1

Local Laplacian (LL) form: Here, the weight matrix is formed directly using a local

Laplacian operator5,49,50 between neighboring locations, where Wµ−µ0
= (1/(σµ−µ0

)2)MTM ,

where M is the local Laplacian matrix, which is defined as

Mij =















0 if i and j are not neighbors

−1 if i and j are neighbors
∣

∣

∣

∑

j Mij

∣

∣

∣ if i = j

(29)

Computation of Wµ−µ0
requires an estimate of variance of parameters ((σµ−µ0

)2), same is

true for calculation of Tikhonov regularization parameter (Eq. 14). The expected variance

can be computed in many ways, the most common way for imaging problems is from the

literature (which gives the prior opinion). For example, the optical contrast between tumor

and normal breast tissue is around 3-451 which gives the expected standard deviation

(σµ−µ0
) in the optical properties, which can be used to compute variance. The calibration

of the experimental data is capable of giving a very good estimate of normal tissue optical

properties.45,46 Note that weight matrix containing the expected variance will not impose

a hard constrain on the expected optical properties, but discourages update values (4µ)

which are above these expected deviation in a given iteration.

The advantages of the GLS approach are that:

• It accounts for covariance among the parameters and data points.

• It also allows the individual data points/parameters to have different noise character-

istics (variances)

• It constrains the problem through the weight matrices, to produce stable solutions.

The limitations of the procedure are:
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• It requires prior knowledge about the noise characteristics of parameter and data spaces

• The weight matrices may necessitate computation of the inverse of covariance matrices

(increasing run time and memory requirements)

• It can generate unstable solutions when unreasonable constraints are inadvertently

applied

With Spatial Priors

Overall, the LS minimization schemes using spatial priors can be broadly classified into two

approaches. (1) Soft-Priors (2) Hard-Priors. The following two subsections will discuss these

two approaches.

3.D. Soft-Priors

In this approach, the regularization matrix L in the Tikhonov approach (Eq. 18) encodes

the spatial information.21,26 Previous results have shown that using the spatial priors in

this fashion does not bias the image estimate when the prior information is imperfect.26

Typically, the conventional image is segmented into different regions depending on tissue-

type to generate the spatial constraints. The L-matrix relates each nodal optical property in

the numerical model to the other nodes in that region.26 Two possible forms are indicated

below.

3.D.1. Laplacian form21

L(i, j) =















0 if i and j are not in the same region

−1/N if i and j are in the same region

1 if i = j

(30)

where N is the number of sampling points (e.g. nodes in a FEM mesh) in that region

3.D.2. Helmholtz form26

L(i, j) =



















0 if i and j are not in the same region

− 1
N+(κh)2

if i and j are in the same region

1 if i = j

(31)

where N is the number of nodes in that region, κ = 1/l with l being the covariance length,

and h is the distance between the nodes.
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3.E. Hard-Priors

In the Hard-Prior approach, also known as a parameter-reduction technique, the number

of parameters to be estimated becomes the number of regions segmented from the other

imaging modality (spatial-priors).26 Even though the number of parameters to be estimated

reduces considerably (relative to soft priors), the problem can still be ill-posed,2 so an LM

approach was used (Eq. 11) in this case due to its simplicity. The main advantage of the

method are:

• The problem is over-determined, which also implies JTJ is positive definite

• It is computationally efficient

The limitations include:

• The effect of error or uncertainty in the spatial priors can be amplified by the technique.

• The DOT problem may still be ill-posed (and ill-conditioned) after the constraints are

added2

3.F. Important Notes about Minimization schemes

There are additional important points about these minimization schemes.

• The weight matrices (Wδ and Wµ−µ0
) in the GLS scheme are computed before the

iterative reconstruction procedure begins and are invariant during the iterative process.

The same is true of the Soft-Priors L-matrix calculations.

• The first-order conditions (Eqs. 5, 15, and 21) derived by minimizing the objective

functions (Eqs. 4, 12, and 20) in all minimization schemes appear on the right hand

side (R.H.S) of the update equations (Eqs. 11, 18, and 22) which means that only when

the R.H.S. has reached zero, the solution reached the global minimum.

• Computation of weight matrices, L-matrices and the Tikhonov regularization param-

eter, requires a prior opinion about the variances of the parameters and data. Here,

only the best prior estimates (BPE) are used, which means that the actual variances

of the parameter and data spaces are used in the reconstruction procedure. Variation

from the best prior values can be examined also, to observe the effect of priors, but

that work is beyond the scope of the present paper.

• When spatial-priors are used in this study (as well as in most studies), it is assumed

that they are perfect. The effect of spatial prior uncertainty on DOT inverse problem

is discussed in Ref.,23,24,26 and is the subject of ongoing study.
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• The covariance lengths associated in the weight matrix (GLS-AC form, Eq. 28), and

the L-matrix (Helmholtz form, Eq. 31) calculations are chosen to be 10mm and 5mm

respectively. The effect of covariance length on the image reconstruction is discussed

in Ref.26

• In the LM approach (Eq. 11), the Jacobian is normalized by its optical properties. Also

α was chosen initially to be 1 and it was reduced by a factor of 100.25 at every iteration

and multiplied by the maximum of the diagonal values of JTJ. The normalization

procedure is described in Ref.52 Moreover, eight iterations were chosen for all the LM

reconstructions, as it has been shown in the literature that after this iteration, error

in the optical properties increases for this particular problem and algorithm.53,54 This

inherent instability can be attributed to the fact that JTJ is not positive definite in

DOT.

• For simplicity, all the reconstruction algorithms are tested only in the two-dimensional

case. Comparison of three-dimensional reconstructions are left for future investigations.

3.F.1. Special cases of GLS minimization

The update equation for the GLS scheme, Eq. 22, turns into the Tikhonov case (Eq. 18) when

Wδ = I andWµ−µ0
= λLTL. Moreover, if one assumes that 4µ = µ−µ0, which is equivalent

to taking a single step in the iterative procedure, then Eq. 19 maps into Eq. 11 with α = 2λ.

Hence, the LM technique can be viewed as a special case of the Tikhonov method, which

itself is a special case of the GLS approach. It is important however to differentiate LM from

the single-step Tikhonov approach because LM requires α to reach zero asymptotically with

number of iterations, whereas in the Tikhonov scheme, λ is constant. Moreover, LM does

not involve parameters in the objective function.

3.F.2. Stopping Criterion

The importance of the stopping criterion in an iterative procedure can not be ignored. The

stopping criterion used in this work is based on the first-order conditions and data-model

misfit, which in the limit ensures that the problem has reached the global minima. The

iterative procedure is stopped when the L2-norm of the data-model misfit (δ) does not

improve by more than 10−10% or the L2-Norm of the first order conditions is less than

10−17%. Beyond these values, the round-off error dominates. This stopping criterion is more

robust because it involves first-order conditions as well.
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4. Test Problem

This section provides the details of the test problem considered here. The optical property

distributions used for the synthetic data (y, noise added) generation are shown in Fig. 2.

The diameter of the domain was 86 mm. The background optical properties were µa =

0.01 mm−1 and µ′s = 1.0 mm
−1. There were two irregular shaped targets, one in µa with a

contrast of 2:1 to background and one in µ′s with a contrast of 3:1 relative to the background.

A mesh consisting of 4617 nodes (corresponding to 9040 linear triangular elements) was

used for the generation of data. Sixteen light collection/delivery fibers were arranged equally

spaced on the boundary of the circle, where one fiber was used as the source while all other

fibers served as detectors in turn which produced a total of 240 measurements (that is 240

ln(A) data points and 240 θ data points). The source was modeled as a Gaussian profile

with a Full Width Half Maximum (FWHM) of 3 mm to represent the light applied,55 and

was placed at a depth of one transport scattering distance from the tissue boundary.56

Noise levels of 1%, 3%, 5% and 10% were added to the modeled data ([ln(A); θ]) to form

the experimental data (y). At the same time, the variances in the data were also computed

to be used in the reconstruction algorithms.

The actual reconstructions and forward modeled data computation were performed on

different FEM meshes.57 This mesh has the same diameter (86 mm) with 1785 FEM nodes,

which corresponded to 3418 linear triangular elements.56 The expected distribution of optical

properties is given in Fig. 3(a) (first column). Background optical properties were used as

initial estimates (µ0) in the evaluation of reconstruction methods. The number of parameters

to be estimated was 3570 (1785 in µa and 1785 in µ
′
s). The number of data points available

for reconstruction was 480 (240 of ln(A) and 240 of θ). The dimension of J was 480x3570,Wδ

was 480x480, and Wµ−µ0
was 3570x3570. Optical property distributions were reconstructed

from the data without noise (bias calculations) as well as with noise levels of 1%, 3%, 5% and

10%. The reconstructions are repeated for the case of 3% noise in the data with increasing

complexity (targets)in the optical property distributions.

5. Results and discussion

Initially all reconstruction techniques were executed on a data-set without noise to estimate

the bias. Note that for these calculations the variance was found between the data generated

using meshes (described in Section-4, Fig. 2) with 4617 nodes and 1785 nodes. The results

without employing spatial prior information from the reconstruction techniques are given

in Fig. 3(a). The first column shows the expected distribution for the 1785 node mesh
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used in the reconstruction and forward model calculations. The Tikhonov approach failed

to recover the contrast. This was primarily due to the choice of λ, which was based on

the maximum variance value, which biases the problem to data points that are above the

average noise level. Since DOT is known to have a large dynamic range in the data (at least

8 orders of magnitude55), this choice of λ deemphasize the data points that have low or

intermediate variance values. The Root-Mean-Squared (RMS) errors between the expected

and reconstructed optical properties are plotted in Fig. 6. The mean and standard deviation

in the reconstructed images for different regions (labeled in first column of Fig. 3(a)) using

the reconstruction techniques discussed till now are given in Table-1. In the case of no

spatial priors, Levenberg-Marquardt (LM) gives less bias in µa, where as GLS performs

better in µ′s. The bias calculations were repeated with spatial-priors and the reconstruction

results are presented in Fig. 3(b). These RMS errors in the optical properties are also

plotted in Fig. 6. Surprisingly the Soft-Prior approach (Laplacian and Helmholtz) performed

better than the Hard-Prior strategy. It can also be observed from Fig. 6 and Table-1 that

the usage of spatial-priors reduces the bias by at least a factor of 2.

Figure 4(a) shows reconstruction results using data with 5% noise in amplitude without

employing spatial priors. Once again the Tikhonov approach fails to recover the contrast.

The LM results are dominated by boundary artifacts. Fig. 4(b) presents the results from

the same data set when spatial priors were employed. Fig. 5(a) and 5(b) show similar

kinds of effort for the case of data with 10% noise. The RMS error in the reconstructed

µa and µ′s images are plotted in Fig. 6 as a function of increasing noise level. The RMS

error using the LM approach increases with increasing noise. GLS techniques perform very

well even in the case of 10% noise (Fig. 5(a) and 6). Among the GLS methods, usage of

an analytical covariance form gives better results (≈ 13% less RMS error) in µa and the

local Laplacian form performs slightly better (≈ 3% less RMS error) in µ′s. In the case of

employment of spatial-priors, it can clearly be seen (from Fig. 4(b), 5(b) & 6 and Table-1)

that Hard-Priors perform better in µ′s reconstruction when the noise level is below 10%.

Among the soft-prior results, for µa, the RMS error linearly increases with increasing noise

level in the Laplacian case (Fig. 6). In µ′s reconstructions, the performance of Laplacian

and Helmholtz are comparable, clearly Helmholtz performs slightly better (≈ 5%) when the

noise level is above 3%. Interestingly, the Helmholtz regularization emerges with the lowest

RMS error in µa reconstruction. This is primarily because of the covariance length factor in

the Helmholtz form of the regularization matrix (Eq. 31), which ensures that the optical

properties covary within that correlation length (in here it is 5 mm). The same explanation
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is true for the GLS-Analytical covariance form (Eq. 28), which performs better in µa

estimation. It is also important to note that in the case of a limited number of wavelengths,

Srinivasan et al58 have shown that 5% error in the optical property estimate (µa and µ
′
s) can

lead to approximately 45% error in spectral properties (Hemoglobin, Water Concentrations,

Oxygen Saturation, and Scattering Estimates) of tissue. Any small improvement in the

optical property estimates would be important for improvement in the utility of this type

of imaging under practical conditions.

To emphasize the effects of complexity on the reconstruction procedures, a set of

simulations were performed with an increasing number of targets. Each target was chosen

to be circular with a diameter of 10 mm. The contrast to background optical properties was

2:1. The target locations and corresponding optical properties are shown in the first column

of Fig. 7(a). The targets were also labeled from 1 to 4 (background is labeled as 0). The

data used in this case had a noise level of 3%. A total of 4 different reconstructions were

performed by adding each target at a time (from 1 to 4). The result of the 4 target case is

shown in Fig. 7. Corresponding mean and standard deviation of the reconstructed optical

properties for different regions (labeled in first column of Fig. 7(a)) are given in Table-2.

Fig. 8 contains a plot of RMS error in the reconstructed optical properties with increasing

number of targets. The RMS error increases with increasing number of targets for every

reconstruction algorithm. Note that targets 3 and 4 were placed close to the center of the

domain, where the sensitivity is low compared to the periphery.56 Moreover, increasing

the µa targets (from 1 to 2, target numbers 1 and 3), caused the RMS error to increase

by at least 30%. The same is true with the µ′s targets. In the case of multiple targets,

the Helmholtz-type of regularization matrix resulted in the least error in both µa and µ′s.

Even though the Hard-Prior case performs very well in terms of lowest RMS error for a

single target, as the complexity (or number of parameters to be estimated) of the problem

increases, it clearly performs poorer than most of the techniques presented (Fig. 8).

Even though the choice of Tikhonov regularization parameter (λ) given by Eq. 14 is

the optimal, the other common way is to use L-curve.59 The L-curve for DOT is much

shallower60 similar to the estimation problem in Electrical Impedance Tomography (EIT),

which poses a problem in selection of λ and is shown being unreliable in Ref.57

Table-3 gives the computational time per iteration for each of the reconstruction technique

(in these two-dimensional cases) on Pentium IV (dual core) 2.8 GHz, 2GB RAM Linux work
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station. GLS schemes take little more computation time than the Tikhonov minimization,

as expected Hard-Priors took the least computation time.

Overall, the inclusion of spatial-priors has an important positive effect. The errors in the

estimated optical properties are also reduced by at least a factor of 2 with spatial-information.

The reconstructed images also contain the fine features extracted from conventional imaging

modalities. Through the incorporation of the individual variability of the data points and

optical parameters (GLS scheme), reconstruction performs better even when the noise level

in the data is high. It is also important to note that, as mentioned before, iteration number 8

(which is the best result in terms of lowest RMS error) is chosen for RMS error calculations

in LM approach, after this iteration, the solution becomes unstable. Whereas the rest of the

approaches yield stable solutions (error in optical properties did not increase with increas-

ing iterations). When the individual data point variances were not considered (Tikhonov

approach), the reconstruction algorithm may not have the ability to recover the contrast in

the target. Moreover, simultaneous estimation of both absorption and scattering coefficients

causes cross-talk between the two parameter estimates. Even with error-free spatial-priors,

as the complexity of the estimation problem (or number of targets) increased for a given

noise level in the data, the parameter-reduction (Hard-Priors) technique failed to give the

best estimates of the optical properties due to its LM implementation.

6. Conclusions

The diffuse optical tomography inverse problem is often solved by Levenberg-

Marquardt/modified Tikhonov minimization. A generalized approach for diffuse optical

tomographic imaging which incorporates the expected variability of the data noise and

magnitude of the optical parameter variation is presented as a structured weight-matrix

regularization. It is also shown that Tikhonov minimization and the Levenberg-Marquardt

approach are special cases of this generalized Least-Squares (GLS) minimization formalism.

Weight-matrices that are used in this reconstruction procedure, consisting of the variance

and covariance among the data points and optical properties, penalize the solution to match

the modeled data with the experimental data more appropriately. This frame-work can

also be used to incorporate structural information, given by MR, CT or other imaging

modalities when the two are acquired on the same tissue volume. Using a test problem,

all of these techniques are studied in terms of data noise level and test field complexity

and a uniform comparison was made using the same implementation scheme for each

minimization method. Even with highly noisy data, the GLS approach gives meaningful
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reconstruction results. It appears that the standard Levenberg-Marquardt approach may

be unstable for the DOT problem. It is also shown that consideration of the individual

variances of data-points is the key for an estimation procedure to recover high optical

contrast. Employing spatial information reduced the errors in the reconstruction results

by at least a factor of 2. Parameter-reduction using spatial-priors can produce erroneous

results when the noise level is high. The same is true for increasing numbers of targets.

Future work includes investigating various approaches for incorporating spatial-priors

into the GLS scheme with experimental data sets. Moreover, a thorough examination of

these techniques in three-dimensional case will be taken up as a future investigation. The

computer algorithms and test data used in this paper (along with some additional material)

are given at this web page.61

Appendix

A.1 Terminology

DOT–Diffuse Optical Tomography.

µa(r)–Optical absorption coefficient of tissue.

µ′s(r)–Reduced (or transport) scattering coefficient of tissue.

D(r)–Optical diffusion coefficient of tissue = 1
3[µa(r)+µ′s(r)]

.

µ–Parameters (generalized) to estimate = [D(r);µa(r)].

µ0–Prior value of the parameters (initial guess, generally obtained from prior calibra-

tion of data45,46).

F (µ)–Forward Model.

G(µ)–Modeled data (G - Sampled Forward model = S{F}).

A– Amplitude of the signal.

θ–Phase of the signal.
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y–Measured data = [ln(A); θ].

‖X‖–L2-norm of vector X =
√

∑N
i=1 Xi

2.

δ–Data-Model misfit = y −G(µ).

Wδ–Weight matrix for δ = (cov(δ))
−1 (Appendix A-4 of Ref.47).

Wµ−µ0
–Weight matrix for µ-µ0 = (cov(µ− µ0))

−1 (Appendix A-4 of Ref.47).

λ–Tikhonov regularization parameter.

L–Tikhonov regularization matrix.

I–Identity matrix.

σ2–Variance

J–Jacobian of the sampled forward model = ∂G(µ)
∂µ
.

Ω–Objective function.

Error–True value - Estimated value(prediction).

Bias–Difference between the true optical property distribution and estimated optical

properties in the case of model generated data (without adding the noise).

Ill-posed–Small changes in the data can cause large changes in the parameters.

Ill-conditioned–The condition number (ratio of largest singular value to smallest

singular value) is large, which implies the inverse solution would not be unique.

Ill-determined–(or under-determined) The number of independent equations are

smaller than number of unknowns.
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Unstability–Error gets amplified with iterations.

LM–Levenberg-Marquardt minimization (Sec. 3.A).

Tikhonov–Tikhonov minimization scheme without spatial-priors, L = I (Sec. 3.B).

GLS-AC–Generalized least squares minimization scheme (Sec. 3.C) with analytical

covariance form for Wµ−µ0
(Eq. 28).

GLS-LL–Generalized least squares minimization scheme (Sec. 3.C) with local Lapla-

cian form for Wµ−µ0
(Eq. 29).

Laplacian–Tikhonov minimization scheme in the case of soft-priors (Sec. 3.D) where

L approximates Laplacian form, defined by Eq. 30.

Helmholtz–Tikhonov minimization scheme in the case of soft-priors (Sec. 3.D) where L

approximates Helmholtz form, defined by Eq. 31.

Hard-Priors–Parameter-reduction technique based on spatial priors (Sec. 3.E).

A.2 Tikhonov Regularization - Singular Values

It is interesting to examine Tikhonov regularization from the point of view of singular

values. If one rewrites the update equation (Eq. 19) as

[

JTJ+ λI
]

4µi = J
Tδi−1 +C (32)

where C = λ(µi−1 − µ0), as it is a constant vector for a chosen iteration i. Singular-Value

decomposition (SVD) of J gives

J = USV T (33)

where U and V are orthonormal matrices containing the singular vectors of J, i.e. U TU = I

and V TV = I. S is a diagonal matrix containing the singular values (Si) of J. Substituting

this into update equation (Eq. 32) generates

[

V STUTUSV T + λI
]

4µi = V STUT δi−1 + C (34)
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Using the orthonormal properties of U and left multiplying by V T on both sides of Eq. 34

yields
[

V TV STSV T + λV T
]

4µi = V TV STUT δi−1 + V TC (35)

Now using the orthonormal properties of V and rearranging the terms leads to

[

STS + λI
]

V T4µi = STUT δi−1 + V TC (36)

Taking the inverse, left multiplying by V and simplifying the result gives

4µi = V
[

STS + λI
]−1 [

STUT δi−1 + V TC
]

(37)

Writing Eq. 37 in the form

4µi = V DP (38)

where P =
[

STUT δi−1 + V TC
]

, a column vector, and D is a diagonal matrix which has the

form

D(i, j) =







0 if i 6= j
1

Si
2+λ

if i = j
(39)

Similar expressions hold for L 6= I63 in Eq. 18. Considering the case λ = 0, one can clearly

see that for an ill-conditioned matrix J, implying some of the singular values are almost

zero (Si ≈ 0), the inversion becomes unstable (some of the diagonal values of D become

infinite). By using Tikhonov regularization, even when Si = 0, the inversion procedure is

stabilized (Eq. 39). The λ act as a filtering factor, giving the name Tikhonov filtering 63 for

this procedure. Moreover, as this λ damps the amplification of the diagonal values of D for

smaller values of Si in Eq. 39 , this is also known as damped least squares minimization

procedure.63
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List of Tables

Table 1: Mean and standard deviation of the reconstructed (a). µa and (b). µ
′
s values (in

mm−1) for different regions (labeled in first column of Fig. 3(a)) recovered with data having

0%, 5%, 10% noise for images shown in Fig. 3, 4 and 5.

Table 2: Mean and standard deviation of the reconstructed (a). µa and (b). µ
′
s values (in

mm−1) for different regions (labeled in first column of Fig. 7(a)) recovered with data having

3% noise for images shown in Fig. 7.

Table 3: Comparison of computation time per iteration for different reconstruction

techniques on Pentium IV (dual core) 2.8 GHz, 2GB RAM Linux work station. The

abbreviations used for the reconstruction techniques are given in appendix-A.1.

List of Figures

Figure 1: An illustration of the forward and inverse problem in diffuse optical to-

mography is shown,62 where (a) the data y is estimated given values of µa and µ′s and

source/detector positions. In the inverse problem (b), the values of µa and µ′s must be

obtained given a set of measurements (y).

Figure 2: The chosen optical property distribution/domain for the generation of

synthetic data is shown. The diameter of the domain was 86mm.

Figure 3: Reconstruction results (top of the first row, abbreviations are given in the

appendix-A.1) are shown using noiseless data (bias calculations) (a) without spatial-priors

and (b) with spatial priors. The top row contains images of µa and bottom row shows µ
′
s

images.

Figure 4: Reconstruction results (top of the first row, abbreviations are given in the

appendix-A.1) are shown using 5% noisy data (a) without spatial-priors and (b) with spatial

priors. The top row gives images of µa and bottom row shows µ
′
s images.

Figure 5: Reconstruction results (top of the first row, abbreviations are given in the

appendix-A.1) are shown using 10% noisy data (a) without spatial-priors and (b) with
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spatial priors. The top row gives images of µa and bottom row shows µ
′
s images.

Figure 6: A plot of the RMS error in the estimated optical properties is shown as a

function of increasing noise level for all reconstruction techniques.

Figure 7: Reconstruction results (top of the first row, abbreviations are given in the

appendix-A.1) are shown using 3% noisy data (a) without spatial-priors and (b) with spatial

priors for 4 targets in the tissue as shown. The top row gives images of µa and bottom row

shows µ′s images. The actual µa and µ
′
s with target numbers are given in the first column of

(a).

Figure 8: Plot of the RMS error in the estimated optical properties is shown for in-

creasing number of targets with 3% noise in the data for all reconstruction techniques

(legend of the figure). Abbreviations used for the techniques are given in the appendix-A.1.

The targets used are numbered in the images presented in Fig. 7(a).
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Tables

Methods Noise level Region-0 Region-1 Region-2

Actual - 0.01 0.02 0.01

0% 0.0101±0.001 0.0172±0.0023 0.0105±0.0005

LM 5% 0.0102±0.0016 0.0125±0.0016 0.0123±0.0011

10% 0.0103±0.0029 0.0132±0.0026 0.0118±0.0023

0% 0.0102±0.0005 0.0117±0.0003 0.0117±0.0002

Tikhonov 5% 0.0102±0.0004 0.0114±0.0002 0.0112±0.0001

10% 0.0102±0.0003 0.0108±0.0009 0.0107±0.0005

0% 0.01±0.001 0.015±0.0011 0.0112±0.0003

GLS-AC 5% 0.0101±0.0014 0.0146±0.0012 0.0106±0.0004

10% 0.0101±0.0013 0.0136±0.0009 0.0111±0.0008

0% 0.01±0.001 0.0152±0.0012 0.0113±0.0003

GLS-LL 5% 0.0101±0.0016 0.0149±0.0015 0.0108±0.0006

10% 0.0101±0.0016 0.0138±0.0009 0.0112±0.001

0% 0.0098±0.0001 0.0212±0.0001 0.0112±0.0001

Laplacian 5% 0.0098±0.0002 0.0247±0.0001 0.0097±0.0001

10% 0.0095±0.0001 0.0276±0.0002 0.0157±0.0128

0% 0.0099±0.0001 0.019±0.0002 0.0111±0.0001

Helmholtz 5% 0.0099±0.0002 0.0193±0.0002 0.0099±0.0001

10% 0.0098±0.0002 0.0174±0.0002 0.0136±0.0001

0% 0.0099 0.0218 0.0116

Hard-Priors 5% 0.0098 0.0218 0.0131

10% 0.0098 0.018 0.0166

Table 1(a)
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Methods Noise level Region-0 Region-1 Region-2

Actual - 1.0 1.0 3.0

0% 1.0356±0.2364 0.9995±0.0359 2.3758±0.5160

LM 5% 1.075±0.0357 1.0555±0.3254 1.8215±0.3144

10% 1.2672±0.9086 1.3111±0.4128 1.7111±0.6112

0% 1.0096±0.0397 1.1153±0.0260 1.1644±0.0251

Tikhonov 5% 1.0111±0.0004 1.0912±0.0189 1.0934±0.0104

10% 1.0107±0.0216 1.0441±0.0062 1.0416±0.0035

0% 1.0034±0.0688 1.0335±0.0199 1.6838±0.1961

GLS-AC 5% 1.0008±0.0916 1.0670±0.0362 1.6972±0.2037

10% 0.9987±0.0831 1.0761±0.0343 1.3703±0.0773

0% 1.0022±0.0693 1.03±0.0183 1.7801±0.2573

GLS-LL 5% 0.9998±0.1035 1.0567±0.0329 1.8502±0.3034

10% 0.9981±0.0947 1.0839±0.0425 1.4271±0.0990

0% 0.9918±0.0155 0.9429±0.0015 2.8207±0.0491

Laplacian 5% 0.9895±0.0202 0.8559±0.0036 3.6931±0.1551

10% 1.0103±0.0124 0.7447±0.0011 1.9884±0.0096

0% 0.9878±0.0154 1.0518±0.0018 2.7833±0.0854

Helmholtz 5% 0.9813±0.0199 1.1204±0.0081 3.4252±0.1947

10% 0.9884±0.0121 1.2766±0.01 2.1761±0.0382

0% 0.9919 0.9266 2.7332

Hard-Priors 5% 0.9874 1.0358 2.345

10% 0.9854 1.3899 1.822

Table 1(b)
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Methods Region-0 Region-1 Region-2 Region-3 Region-4

Actual 0.01 0.02 0.01 0.02 0.01

LM 0.0101±0.0004 0.0113±0.0001 0.0112±0.0002 0.0111±0.0003 0.011±0.0002

Tikhonov 0.0102±0.0004 0.011±0.0001 0.0112±0.0001 0.0109±0.0001 0.011±0.0001

GLS-AC 0.0102±0.0009 0.0129±0.0003 0.0111±0.0003 0.0114±0.0003 0.0113±0.0003

GLS-LL 0.0102±0.0011 0.0133±0.0004 0.0115±0.0004 0.0113±0.0003 0.0113±0.0002

Laplacian 0.01±0.0002 0.0181±0.0001 0.0105±0.0001 0.0152±0.0001 0.0158±0.0001

Helmholtz 0.01±0.0002 0.0169±0.0001 0.0115±0.0001 0.0149±0.0001 0.0158±0.0001

Hard-Priors 0.01 0.0158 0.0126 0.014 0.0158

(a)

Methods Region-0 Region-1 Region-2 Region-3 Region-4

Actual 1.0 1.0 2.0 1.0 2.0

LM 1.0063±0.0986 1.1333±0.0027 1.24±0.0623 1.1191±0.0396 1.097±0.0366

Tikhonov 1.0051±0.0217 1.0341±0.0019 1.0575±0.0073 1.0321±0.0056 1.0329±0.0043

GLS-AC 0.9993±0.0489 0.9885±0.0139 1.2486±0.0447 1.021±0.0234 1.1184±0.0076

GLS-LL 0.9987±0.0553 0.9764±0.0127 1.2726±0.0596 1.0271±0.0262 1.1422±0.0105

Laplacian 0.9886±0.0163 1.0891±0.0023 2.3799±0.0242 1.3445±0.0043 1.4044±0.0036

Helmholtz 0.9899±0.0164 1.1499±0.0037 2.1122±0.0386 1.3382±0.0079 1.3521±0.0066

Hard-Priors 0.9856 1.3712 1.7319 1.4471 1.5255

(b)

Table 2
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Reconstruction Method Computation time per iteration

LM 17.92 Sec

Tikhonov 21.28 Sec

GLS-AC 23.39 Sec

GLS-LL 23.39 Sec

Laplacian 22.78 Sec

Helmholtz 22.78 Sec

Hard-Priors 10.73 Sec

Table 3
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Figure 1
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Figure 2
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Figure 3(a)
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Figure 3(b)
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Figure 4(a)
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Figure 4(b)
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Figure 5(a)
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Figure 5(b)
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Figure 7(a)
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Figure 7(b)
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